A100433 Bisection of A005349.
2, 4, 6, 8, 10, 18, 21, 27, 36, 42, 48, 54, 63, 72, 81, 90, 102, 110, 112, 117, 126, 133, 140, 150, 153, 162, 180, 192, 198, 201, 207, 210, 220, 224, 228, 234, 243, 252, 264, 270, 285, 300, 308, 315, 322, 330, 336, 351, 364, 372, 378, 396, 400, 405, 408, 414
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A005349.
Programs
-
Magma
A005349:=[n: n in [1..10000] | n mod &+Intseq(n) eq 0]; A100433:= func< n | A005349[2*n] >; [A100433(n): n in [1..150]]; // G. C. Greubel, Apr 09 2023
-
Maple
s:=proc(n) local N:N:=convert(n,base,10):sum(N[j],j=1..nops(N)) end:p:=proc(n) if floor(n/s(n))=n/s(n) then n else fi end: A:=[seq(p(n),n=1..440)]: seq(A[2*j],j=1..58); # Emeric Deutsch, Dec 16 2004
-
Mathematica
Select[Range[1000], Divisible[#, Total[IntegerDigits[#]]] &][[2;; ;; 2]] (* G. C. Greubel, Apr 09 2023 *)
-
SageMath
A005349=[n for n in (1..10^4) if sum(n.digits(base=10)).divides(n)] def A100433(n): return A005349[2*n-1] [A100433(n) for n in range(1,151)] # G. C. Greubel, Apr 09 2023
Formula
a(n) = A005349(2*n). - G. C. Greubel, Apr 09 2023
Extensions
More terms from Emeric Deutsch, Dec 16 2004