cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100448 Number of triples (i,j,k) with 1 <= i <= j < k <= n and gcd{i,j,k} = 1.

Original entry on oeis.org

0, 1, 4, 9, 19, 30, 51, 73, 106, 140, 195, 241, 319, 388, 480, 572, 708, 813, 984, 1124, 1310, 1485, 1738, 1926, 2216, 2462, 2777, 3059, 3465, 3749, 4214, 4590, 5060, 5484, 6048, 6474, 7140, 7671, 8331, 8899, 9719, 10289, 11192, 11902, 12754, 13535, 14616
Offset: 1

Views

Author

N. J. A. Sloane, Nov 21 2004

Keywords

Comments

Probably the partial sums of A102309. - Ralf Stephan, Jan 03 2005

Crossrefs

Programs

  • Maple
    f:=proc(n) local i,j,k,t1,t2,t3; t1:=0; for i from 1 to n do for j from i to n do t2:=gcd(i,j); for k from j+1 to n do t3:=gcd(t2,k); if t3 = 1 then t1:=t1+1; fi; od: od: od: t1; end;
  • Mathematica
    f[n_] := Length[ Union[ Flatten[ Table[ If[ GCD[i, j, k] == 1, {i, j, k}], {i, n}, {j, i, n}, {k, j + 1, n}], 2]]]; Table[ If[n > 3, f[n] - 1, f[n]], {n, 47}] (* Robert G. Wilson v, Dec 14 2004 *)
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A100448(n):
        if n == 0:
            return 0
        c, j = 2, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(6*A100448(k1)+1)
            j, k1 = j2, n//j2
        return (n*(n**2-1)-c+j)//6 # Chai Wah Wu, Mar 29 2021

Formula

a(n) = (A071778(n)-1)/6. - Vladeta Jovovic, Nov 30 2004
a(n) = (1/6)*(-1 + Sum_{k=1..n} moebius(k)*floor(n/k)^3). - Ralf Stephan, Jan 03 2005

Extensions

More terms from Robert G. Wilson v, Dec 14 2004
Edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of R. J. Mathar