A100514 Numerator of Sum_{k=0..n} 1/C(3*n, 3*k).
1, 2, 41, 85, 9287, 10034, 4089347, 3529889, 119042647, 191288533, 1553111566613, 471993968921, 48141284433673, 287285900609, 24342145990117741, 68262703949495173, 490305954062679017, 2207402771385797549, 995490830339080453219, 188798823808438240073
Offset: 0
Examples
Sum_{k=0..n} 1/C(3*n, 3*k) = { 1, 2, 41/20, 85/42, 9287/4620, 10034/5005, 4089347/2042040, 3529889/1763580, 119042647/59491432, 191288533/95611230, 1553111566613/776363187600, ...} = a(n)/A100515(n).
References
- M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 126-127.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..765
Programs
-
Magma
[Numerator((&+[1/Binomial(3*n, 3*k): k in [0..n]])): n in [0..40]]; // G. C. Greubel, Mar 28 2023
-
Mathematica
Table[Numerator[(3*n+1)*Sum[Beta[3k+1,3n-3k+1], {k,0,n}]], {n,0,40}] (* G. C. Greubel, Mar 28 2023 *)
-
SageMath
def A100514(n): return numerator((3*n+1)*sum(beta(3*k+1, 3*n-3*k+1) for k in range(n+1))) [A100514(n) for n in range(40)] # G. C. Greubel, Mar 28 2023
Formula
a(n) = numerator( Sum_{k=0..n} 1/C(3*n, 3*k) ).
a(n) = numerator( (3*n+1)*Sum_{k=0..n} beta(3*k+1, 3*(n-k)+1) ). - G. C. Greubel, Mar 28 2023