A100538 Volume of the 3-dimensional box of sides of length equal to consecutive Padovan numbers (A000931). These boxes form a spiral in three dimensions similar to the spiral of Fibonacci boxes in two dimensions.
1, 2, 4, 12, 24, 60, 140, 315, 756, 1728, 4032, 9408, 21756, 50764, 117845, 273910, 637260, 1480404, 3442800, 8003000, 18603000, 43251975, 100540440, 233735040, 543371136, 1263161472, 2936540824, 6826574552, 15869878969, 36893076570
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- I. Stewart, Tales of a Neglected Number
- Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
- Index entries for linear recurrences with constant coefficients, signature (1,2,3,-2,4,-4,-1,-1,0,-1).
Crossrefs
Cf. A000931.
Programs
-
Mathematica
LinearRecurrence[{1, 2, 3, -2, 4, -4, -1, -1, 0, -1}, {1, 2, 4, 12, 24, 60, 140, 315, 756, 1728}, 50] (* Vincenzo Librandi, Apr 24 2017 *)
Formula
For large n a(n+1) -> a(n) * p^3 where p is the plastic number = 1.324718... a(n+1) = a(n)+ (a(n)/P(n))*P(n+1 ) where P are the Padovan numbers (A000931) starting 1, 1, 1, 2, 2, 3, 4, 5, 7, etc.
a(n) = +a(n-1) +2*a(n-2) +3*a(n-3) -2*a(n-4) +4*a(n-5) -4*a(n-6) -a(n-7) -a(n-8) -a(n-10) = A000931(n+4)*A000931(n+5)*A000931(n+6). G.f.: x*(1+x+x^3) / ( (x-1)*(x^3-2*x^2+3*x-1)*(x^6+3*x^5+5*x^4+5*x^3+5*x^2+3*x+1) ). - R. J. Mathar, Sep 14 2010
Extensions
More terms from R. J. Mathar, Sep 14 2010
Comments