cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100538 Volume of the 3-dimensional box of sides of length equal to consecutive Padovan numbers (A000931). These boxes form a spiral in three dimensions similar to the spiral of Fibonacci boxes in two dimensions.

Original entry on oeis.org

1, 2, 4, 12, 24, 60, 140, 315, 756, 1728, 4032, 9408, 21756, 50764, 117845, 273910, 637260, 1480404, 3442800, 8003000, 18603000, 43251975, 100540440, 233735040, 543371136, 1263161472, 2936540824, 6826574552, 15869878969, 36893076570
Offset: 1

Views

Author

John Lien, Nov 27 2004

Keywords

Comments

a(n)^(1/3) rounded to the nearest integer equals A000931(n+5). - Peter M. Chema, Apr 24 2017

Crossrefs

Cf. A000931.

Programs

  • Mathematica
    LinearRecurrence[{1, 2, 3, -2, 4, -4, -1, -1, 0, -1}, {1, 2, 4, 12, 24, 60, 140, 315, 756, 1728}, 50] (* Vincenzo Librandi, Apr 24 2017 *)

Formula

For large n a(n+1) -> a(n) * p^3 where p is the plastic number = 1.324718... a(n+1) = a(n)+ (a(n)/P(n))*P(n+1 ) where P are the Padovan numbers (A000931) starting 1, 1, 1, 2, 2, 3, 4, 5, 7, etc.
a(n) = +a(n-1) +2*a(n-2) +3*a(n-3) -2*a(n-4) +4*a(n-5) -4*a(n-6) -a(n-7) -a(n-8) -a(n-10) = A000931(n+4)*A000931(n+5)*A000931(n+6). G.f.: x*(1+x+x^3) / ( (x-1)*(x^3-2*x^2+3*x-1)*(x^6+3*x^5+5*x^4+5*x^3+5*x^2+3*x+1) ). - R. J. Mathar, Sep 14 2010

Extensions

More terms from R. J. Mathar, Sep 14 2010