A100554 Decimal expansion of the fractional part of Sum_{n>=1} cos((n + 1)*Pi)*zeta(2*n) = zeta(2) - zeta(4) + zeta(6) - zeta(8) + ..., where Zeta is the Riemann zeta function.
5, 7, 6, 6, 7, 4, 0, 4, 7, 4, 6, 8, 5, 8, 1, 1, 7, 4, 1, 3, 4, 0, 5, 0, 7, 9, 4, 7, 5, 0, 0, 0, 0, 4, 9, 0, 4, 4, 5, 6, 5, 6, 2, 6, 6, 4, 0, 3, 8, 1, 6, 6, 6, 5, 5, 7, 5, 0, 6, 2, 4, 8, 4, 3, 9, 0, 1, 5, 4, 2, 4, 7, 9, 1, 8, 3, 1, 0, 0, 2, 1, 7, 4, 3, 5, 6, 5, 5, 5, 1, 7, 5, 9, 3, 9, 5, 4, 9, 1, 8, 7, 6, 5, 1, 7
Offset: 0
Examples
0.576674047468581174134050794750000490...
Crossrefs
Cf. A000796.
Programs
-
Maple
evalf(Pi*coth(Pi)/2-1) ; # R. J. Mathar, Apr 01 2010
-
Mathematica
N[FractionalPart[Sum[Cos[(n + 1)*Pi]*Zeta[2*n], {n, 1000}]], 140] RealDigits[Pi*Coth[Pi]/2 - 1, 10, 105] // First (* Jean-François Alcover, Jan 06 2014, after R. J. Mathar *)
-
PARI
(psi(I)-psi(-I))/2/I-3/2
-
PARI
sumnumrat(1/(x^2+1),2) \\ Charles R Greathouse IV, Jan 20 2022
-
PARI
sumnumrat(1/(x^2+4*x+5),0) \\ Charles R Greathouse IV, Jan 20 2022
Formula
Equals Pi*(coth(Pi))/2 -1 where Pi = A000796. - R. J. Mathar, Apr 01 2010
Equals Sum_{k>=2} 1/(k^2 + 1). - Amiram Eldar, Aug 15 2020
Comments