A100564 Normal sequence of primes with a(1) = 3.
3, 5, 17, 23, 29, 53, 83, 89, 113, 149, 173, 197, 257, 263, 269, 293, 317, 353, 359, 383, 389, 419, 449, 467, 479, 503, 509, 557, 563, 569, 593, 617, 653, 659, 677, 683, 773, 797, 809, 827, 857, 863, 887, 947, 977, 983, 1049, 1097, 1109, 1217, 1223, 1229, 1283
Offset: 1
Keywords
Examples
a(2) = 5 because a(1) = 3 is not a divisor of 4 = 5 - 1. a(3) = 17 because a(1) = 3 is a divisor of 6 and 12 (so 7 and 13 are not possible for a(3)); a(2) = 5 is a divisor of 10 (so 11 is not possible for a(3)), but a(1) = 3 and a(2) = 5 both not divisors of 16 = 17 - 1.
References
- S. W. Golomb, Problems in the Distribution of the Prime Numbers, Ph.D. dissertation, Dept. of Mathematics, Harvard University, May 1956. See page 8.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Paul Erdős, On a problem of G. [sic] Golomb, Journal of the Australian Mathematical Society, Vol 2, Issue 1 (1961), pp. 1-8.
- Solomon W. Golomb, Sets of primes with intermediate density, Mathematica Scandinavica, Vol. 3 (1956), pp. 264-274.
- H. G. Meijer, Sets of Primes with Intermediate Density, Mathematica Scandinavica, Vol. 34 (1974), pp. 37-43.
- Erick Wong, Computations on Normal Families of Primes.
Programs
-
Maple
a:= proc(n) option remember; local p; if n=1 then 3 else p:= a(n-1); do p:= nextprime(p); if {} = numtheory[factorset](p-1) intersect {seq(a(i), i=1..n-1)} then return p fi od fi end: seq(a(n), n=1..70); # Alois P. Heinz, Feb 05 2017
-
Mathematica
a[1] = 3; a[n_] := a[n] = Block[{k = PrimePi[a[n - 1]] + 1, t = Table[a[i], {i, n - 1}]}, While[ Union[ Mod[ Prime[k] - 1, t]][[1]] == 0, k++ ]; Prime[k]]; Table[ a[n], {n, 53}] (* Robert G. Wilson v, Dec 04 2004 *)
Extensions
More terms from Robert G. Wilson v, Dec 04 2004
Comments