A100633 Primes that are the decimal concatenation of three separate primes.
257, 523, 1123, 1153, 1327, 1373, 1723, 1753, 1973, 2113, 2137, 2237, 2293, 2297, 2311, 2341, 2347, 2357, 2371, 2377, 2383, 2389, 2417, 2437, 2473, 2477, 2531, 2543, 2579, 2593, 2617, 2677, 2711, 2713, 2719, 2729, 2731, 2741, 2753, 2767, 2789, 2797
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local m,i,j,ni,nj,np,n3; if not isprime(n) then return false fi; m:= ilog10(n); for i from 1 to m-1 do ni:= n mod 10^i; if ni < 10^(i-1) or not isprime(ni) then next fi; np:= (n-ni)/10^i; for j from 1 to m-i do nj:= np mod 10^j; if nj < 10^(j-1) then next fi; n3:= (np-nj)/10^j; if nops({ni,nj,n3})=3 and isprime(nj) and isprime(n3) then return true fi; od od; false end proc; select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Apr 28 2025
-
Mathematica
(*first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) t = KSubsets[ Prime[ Range[25]], 3]; lst = {}; Do[k = 1; u = Permutations[ t[[n]]]; While[k < 7, v = FromDigits[ Flatten[IntegerDigits /@ u[[k]]]]; If[ PrimeQ[v], AppendTo[lst, v]]; k++ ], {n, Binomial[25, 3]}]; Take[ Union[lst], 42]
Extensions
Edited by Charles R Greathouse IV, Apr 29 2010