cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100633 Primes that are the decimal concatenation of three separate primes.

Original entry on oeis.org

257, 523, 1123, 1153, 1327, 1373, 1723, 1753, 1973, 2113, 2137, 2237, 2293, 2297, 2311, 2341, 2347, 2357, 2371, 2377, 2383, 2389, 2417, 2437, 2473, 2477, 2531, 2543, 2579, 2593, 2617, 2677, 2711, 2713, 2719, 2729, 2731, 2741, 2753, 2767, 2789, 2797
Offset: 1

Views

Author

Robert G. Wilson v, Dec 03 2004

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(n) local m,i,j,ni,nj,np,n3;
     if not isprime(n) then return false fi;
     m:= ilog10(n);
     for i from 1 to m-1 do
       ni:= n mod 10^i;
       if ni < 10^(i-1) or not isprime(ni) then next fi;
       np:= (n-ni)/10^i;
       for j from 1 to m-i do
         nj:= np mod 10^j;
         if nj < 10^(j-1) then next fi;
         n3:= (np-nj)/10^j;
         if nops({ni,nj,n3})=3 and isprime(nj) and isprime(n3) then return true fi;
     od od;
     false
    end proc;
    select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Apr 28 2025
  • Mathematica
    (*first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) t = KSubsets[ Prime[ Range[25]], 3]; lst = {}; Do[k = 1; u = Permutations[ t[[n]]]; While[k < 7, v = FromDigits[ Flatten[IntegerDigits /@ u[[k]]]]; If[ PrimeQ[v], AppendTo[lst, v]]; k++ ], {n, Binomial[25, 3]}]; Take[ Union[lst], 42]

Extensions

Edited by Charles R Greathouse IV, Apr 29 2010