cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100646 Denominator of Cotesian number C(n,2).

Original entry on oeis.org

6, 8, 15, 144, 280, 640, 14175, 2240, 199584, 87091200, 875875, 22353408000, 5003856000, 229605376, 10854718875, 941525544960000, 1013940928000, 3064383995904000, 82324272054024, 2996771880960000, 255484332230400000, 809280523999877529600000, 5699209469078125
Offset: 2

Views

Author

N. J. A. Sloane, Dec 05 2004

Keywords

Examples

			1/6, 3/8, 2/15, 25/144, 9/280, 49/640, -464/14175, 27/2240, -16175/199584, -3237113/87091200, -105387/875875, -1737125143/22353408000, -770720657/5003856000, -25881785/229605376, ... = A100645/A100646 = A002179/A002176 (the latter not being in lowest terms)
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.

Crossrefs

Cf. A100645.
See A002176 for further references. A diagonal of A100640/A100641.

Programs

  • Mathematica
    cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; a[n_] := Denominator[cn[n, 2]]; Table[a[n], {n, 2, 24}]  (* Jean-François Alcover, Oct 08 2013 *)