A100645
Numerator of Cotesian number C(n,2).
Original entry on oeis.org
1, 3, 2, 25, 9, 49, -464, 27, -16175, -3237113, -105387, -1737125143, -770720657, -25881785, -1997012608, -135505859252213, -214182958293, -528114253960241, -19467909708875, -595278405326437, -66462260889140083, -180690496141440384775397, -1610254561193224
Offset: 2
1/6, 3/8, 2/15, 25/144, 9/280, 49/640, -464/14175, 27/2240, -16175/199584, -3237113/87091200, -105387/875875, -1737125143/22353408000, -770720657/5003856000, -25881785/229605376, ... = A100645/A100646 = A002179/A002176 (the latter not being in lowest terms)
- Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
-
cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; a[n_] := Numerator[cn[n, 2]]; Table[a[n], {n, 2, 24}] (* Jean-François Alcover, Oct 08 2013 *)
A321122
a(n) = n-th row common denominator of A321121.
Original entry on oeis.org
4, 2, 3, 8, 36, 96, 44, 360, 492, 448, 1836, 5016, 2284, 18720, 25572, 23288, 95436, 260736, 118724, 973080, 1329252, 1210528, 4960836, 13553256, 6171364, 50581440, 69095532, 62924168, 257868036, 704508576, 320792204, 2629261800, 3591638412, 3270846208
Offset: 0
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.3.
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, Chapter II. The Cubic Spline, Mathematics in Science and Engineering Volume 38 (1967), pp. 9-74.
-
s = -2 + Sqrt[3];
e[n_] := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n));
f[n_, k_] := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n));
w[n_, k_] := If[k == 0 || k == n, 1/4 + e[n]/6, If[k == 1 || k == n - 1, 2 - (1 + 1/6)*e[n], 1 + f[n, k]/4]];
a[n_] := LCM @@ Table[Denominator[FullSimplify[w[n, k]]], {k, 0, n}];
Join[{4, 3, 2}, Table[a[n], {n, 3, 50}]]
-
s : -2 + sqrt(3)$
e(n) := s*(2 + s)*(-1 + s^n)/(2*(1 - s)*(-s + s^n))$
f(n, k) := 6*s^(1 - k)*(s^(2*k) + s^n)/((1 - s)*(-s + s^n))$
w(n, k) := if k = 0 or k = n then 1/4 + e(n)/6 else if k = 1 or k = n - 1 then 2 - (1 + 1/6)*e(n) else 1 + f(n, k)/4$
a(n) := lcm(makelist(denom(fullratsimp(w(n, k))), k, 0, n))$
append([4, 2, 3], makelist(a(n), n, 3, 50));
Showing 1-2 of 2 results.