A100719 Size of the largest subset of {1,2,...,n} such that no two distinct elements differ by a perfect square.
1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20
Offset: 1
Keywords
References
- H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemeredi on arithmetic progressions, J. Analyse Math. 31 (1977), 204-256.
- A. Sárközy, On difference sets of sequences of integers II, Annales Univ. Sci. Budapest, Sectio Math.
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..410 (terms n = 1..100 from Rob Pratt)
- A. Balog, J. Pelikan, J. Pintz and E. Szemeredi, Difference sets without kappa-th powers, Acta Math. Hungar. 65 (1994), no. 2, 165-187.
- Thomas F. Bloom and James Maynard, A new upper bound for sets with no square differences, arXiv:2011.13266 [math.NT], 2020-2021; Compositio Mathematica 158.8 (2022): 1777-1798.
- Fausto A. C. Cariboni, Sets of maximal span that yield a(n) for n = 3..314, Nov 28 2018.
- Ben Green and Mehtaab Sawhney, Improved bounds for the Furstenberg-Sárközy theorem, arXiv preprint arXiv:2411.17448 [math.NT], 2024.
- J. Pintz, W. L. Steiger and E. Szemeredi, On Sets of Natural Numbers Whose Difference Set Contains No Squares, J. London. Math. Soc. 37, 1988, 219-231.
- I. Ruzsa, Difference sets without squares, Period. Math. Hungar. 15 (1984), no. 3, 205-209.
- A. Sárközy, On difference sets of sequences of integers I, Acta Mathematica Academiae Scientiarum Hungarica, March 1978, Volume 31, Issue 1, pp 125-149.
- A. Sárközy, On difference sets of sequences of integers III, Acta Mathematica Academiae Scientiarum Hungarica, September 1978, Volume 31, Issue 3, pp 355-386.
Formula
a(n) >> n^0.733 (I. Ruzsa, Period. Math. Hungar. 15 (1984), no. 3, 205-209). The best upper bound appears to be O(N (log n)^(- c log log log log N)) due to Pintz, Steiger and Szemeredi (J. London. Math. Soc. 37, 1988, 219-231). - Sujith Vijay, Sep 18 2007
A. Sárközy worked on this problem. There is also the following result of A. Balog, J. Pelikan, J. Pintz, E. Szemeredi: the size of largest squarefree difference sets = O(N / (log N)^(log log log log N / 4)). - Tsz Ho Chan (tchan(AT)MEMPHIS.EDU), Sep 19 2007
Green & Sawhney improve the upper bound to a(n) << n exp(-(log n)^c) for any c < 1/4. - Charles R Greathouse IV, Nov 28 2024
Extensions
Computed via integer programming by Rob Pratt, Sep 17 2007
Comments