A100759 Beginning with 2, least prime not occurring earlier such that the concatenation of first n terms has the least prime factor prime(n).
2, 7, 5, 17, 127, 3, 347, 37, 71, 829, 89, 79, 311, 271, 1103, 823, 827, 7219, 149, 499, 3947, 6367, 2861, 3673, 13781, 2281, 281, 229, 353, 1597, 191, 1879, 2609, 10993, 19961, 4789, 383, 1093, 521, 13681, 9227, 12619, 8219, 12037, 8573, 7621, 6029
Offset: 1
Examples
a(1) = 2, a(2) = 7 and the least prime divisor of 27 is 3.
Crossrefs
Cf. A114025.
Programs
-
Mathematica
a = {2}; b = 2; Do[i = 1; While[Length[Intersection[a, {Prime[i]}]] == 1, i++ ]; While[ !FactorInteger[FromDigits[Join[IntegerDigits[b], IntegerDigits[Prime[i]]]]][[1, 1]] == Prime[n], i++ ]; AppendTo[a, Prime[i]]; b = FromDigits[Join[IntegerDigits[b], IntegerDigits[Prime[i]]]], {n, 2, 30}]; a (* Stefan Steinerberger, Dec 21 2007 *)
Extensions
More terms from Stefan Steinerberger, Dec 21 2007
More terms from David Wasserman, Mar 04 2008
Comments