A100764 a(1) = 1, a(2) = 2, a(3) = 3, a(n) = least number not the sum of three or fewer previous terms.
1, 2, 3, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 223, 229, 235, 241, 247, 253, 259, 265, 271, 277, 283, 289, 295, 301, 307, 313, 319, 325
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2, -1).
Crossrefs
Essentially the same as A016921.
Programs
-
Mathematica
a[1] = 1; a[2] = 2; a[3] = 3; a[n_] := a[n] = (m = 1; l = n - 1; t = Union[ Flatten[ Join[ Table[ a[i], {i, l}], Table[ a[i] + a[j], {i, l}, {j, i + 1, l}], Table[ a[i] + a[j] + a[k], {i, l}, {j, i + 1, l}, {k, j + 1, l}] ]]]; While[ Position[t, m] != {}, m++ ]; m); Table[ a[n], {n, 60}] (* Robert G. Wilson v, Dec 14 2004 *) LinearRecurrence[{2,-1},{1,2,3,7,13},60] (* Harvey P. Dale, Nov 17 2024 *)
Formula
a(n+4) = a(4) + 6n for n > 4; a(n) = 6n - 17, n >3.
From Chai Wah Wu, Oct 25 2018: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 5.
G.f.: x*(2*x^4 + 3*x^3 + 1)/(x - 1)^2. (End)
Extensions
More terms from Robert G. Wilson v, Dec 14 2004
Comments