A100818 For a given unrestricted partition pi, let P(pi)=lambda(pi), if mu(pi)=0. If mu(pi)>0 then let P(pi)=nu(pi), where nu(pi) is the number of parts of pi greater than mu(pi), mu(pi) is the number of ones in pi and lambda(pi) is the largest part of pi.
1, 2, 1, 4, 3, 8, 7, 15, 15, 27, 29, 48, 53, 82, 94, 137, 160, 225, 265, 362, 430, 572, 683, 892, 1066, 1370, 1640, 2078, 2487, 3117, 3725, 4624, 5519, 6791, 8092, 9885, 11752, 14263, 16922, 20416, 24167, 29007, 34254, 40921, 48213, 57345, 67409, 79864
Offset: 1
Keywords
Examples
a(3)=1 because P(3)=3, P(2 1)=1 and P(1 1 1)=0.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- G. E. Andrews and F. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc., 18 (1988), 167-171.
Programs
-
Mathematica
Rest[ CoefficientList[ Series[x + 1/(1 + x) Product[1/(1 - x^n), {n, 50}], {x, 0, 50}], x]] (* Robert G. Wilson v, Feb 11 2005 *)
Formula
G.f.: x+(1/(1+x))* Product_{n>=1}(1/(1-x^n)). [corrected by Vaclav Kotesovec, Aug 29 2019]
a(n) = A000041(n) - a(n-1), for n>2. - Jon Maiga, Aug 29 2019 [corrected by Vaclav Kotesovec, Aug 29 2019]
Extensions
More terms from Robert G. Wilson v, Feb 11 2005
Comments