cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100822 Triangle read by rows: T(n,k) is the number of deco polyominoes of height n with k cells in the first column. (A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 8, 9, 1, 24, 30, 32, 33, 1, 120, 144, 150, 152, 153, 1, 720, 840, 864, 870, 872, 873, 1, 5040, 5760, 5880, 5904, 5910, 5912, 5913, 1, 40320, 45360, 46080, 46200, 46224, 46230, 46232, 46233, 1, 362880, 403200, 408240, 408960, 409080, 409104, 409110, 409112, 409113, 1
Offset: 1

Views

Author

Emeric Deutsch, Jan 06 2005, Aug 09 2006

Keywords

Comments

Row n has n terms. Rows are circular permutations of the rows of A054115. Column 1 and row sums yield A000142 (the factorial numbers). Column 2 yields A059171.
T(n+1,n)=A007489(n).

Examples

			Triangle begins:
1;
1,1;
2,3,1;
6,8,9,1;
24,30,32,33,1;
T(2,1)=T(2,2)=1 because the deco polyominoes of height 2 are the horizontal and vertical dominoes, having, respectively, 1 and 2 cells in their first columns.
		

References

  • E. Barcucci, A. del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k=n then 1 elif k
    				

Formula

T(n, k)=sum((n-j)!, j=1..k) for 1<=k
T(n,k)=T(n-1,k-1)+(n-1)! for k