A121580 Number of cells in column 1 of all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
1, 3, 11, 53, 317, 2237, 18077, 164237, 1656077, 18348557, 221561357, 2895986957, 40737113357, 613623026957, 9854521894157, 168083120422157, 3034505335078157, 57810369261862157, 1159018646647078157
Offset: 1
Examples
a(2)=3 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 2 and 1 cells in their first columns.
Links
- E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
Crossrefs
Cf. A100822.
Programs
-
Maple
a[1]:=1: for n from 2 to 22 do a[n]:=a[n-1]+(n-1)!*(1+n*(n-1)/2) od: seq(a[n],n=1..22);
Formula
a(1) = 1, a(n) = a(n-1)+(n-1)!*(1+n*(n-1)/2) for n>=2.
a(n) = Sum_{k=1..n} k*A100822(n,k).
a(n) = (1/2)*Sum_{j=0..n+1} j! - n!. - Emeric Deutsch, Apr 06 2008
Conjecture D-finite with recurrence a(n) +(-n-4)*a(n-1) +3*(n+1)*a(n-2) +2*(-2*n+3)*a(n-3) +2*(n-3)*a(n-4)=0. - R. J. Mathar, Jul 26 2022
Comments