cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A121582 Number of cells in column 2 of all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

Original entry on oeis.org

0, 1, 7, 40, 252, 1837, 15259, 141798, 1455694, 16360387, 199845957, 2637020884, 37388864368, 566971338009, 9157693715407, 156975522127762, 2846305448882274, 54432896145210943, 1095019542858729769
Offset: 1

Views

Author

Emeric Deutsch, Aug 11 2006

Keywords

Comments

a(n)=Sum(k*A121581(n,k),k=0..n-1).

Examples

			a(2)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 0 and 1 cells in their second columns.
		

References

  • E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.

Crossrefs

Programs

  • Maple
    a:=proc(n) if n=1 then 0 elif n=2 then 1 else ((2*n-3)*a(n-1)-(n-1)*a(n-2)+(n-1)!*(n-2)*(n^2-3*n+4)/2)/(n-2) fi end: seq(a(n),n=1..22);
  • Mathematica
    RecurrenceTable[{a[1]==0,a[2]==1,a[n]==((2n-3)a[n-1]-(n-1)a[n-2]+ (n-1)!(n-2) (n^2-3n+4)/2)/(n-2)},a,{n,20}] (* Harvey P. Dale, Oct 23 2012 *)

Formula

a(1)=0, a(2)=1, a(n)=[(2n-3)a(n-1)-(n-1)a(n-2)+(n-1)!(n-2)(n^2-3n+4)/2]/(n-2) for n>=3.
a(n) ~ n*n!/2. - Vaclav Kotesovec, Aug 15 2013
D-finite with recurrence (-49*n+454)*a(n) +(49*n^2-454*n-1328)*a(n-1) +(49*n^2+1553*n-1464)*a(n-2) +(-581*n^2+612*n+1035)*a(n-3) +(819*n^2-3682*n+4007)*a(n-4) -4*(84*n-169)*(n-4)*a(n-5)=0. - R. J. Mathar, Jul 26 2022

A121583 Triangle read by rows: T(n,k) is the number of deco polyominoes of height n having k cells in the first two columns (n>=1, k>=1). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 1, 0, 2, 6, 10, 5, 1, 0, 6, 16, 29, 34, 23, 11, 1, 0, 24, 60, 102, 148, 154, 119, 77, 35, 1, 0, 120, 288, 474, 668, 867, 874, 719, 533, 341, 155, 1, 0, 720, 1680, 2712, 3768, 4834, 5906, 5914, 5039, 4013, 2957, 1901, 875, 1, 0, 5040, 11520, 18360
Offset: 1

Views

Author

Emeric Deutsch, Aug 11 2006

Keywords

Comments

Row n has 2n-2 terms (n>=2). Row sums are the factorials (A000142). Sum(k*T(n,k), k=0..n)=A121584(n)

Examples

			T(2,2)=2 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, each having 2 cells in their first two columns.
Triangle starts:
1;
0,2;
0,1,4,1;
0,2,6,10,5,1;
0,6,16,29,34,23,11,1;
		

References

  • E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.

Crossrefs

Programs

  • Maple
    Q[1]:=t: for n from 2 to 9 do Q[n]:=expand(simplify(t*Q[n-1]+(t^n-t)/(t-1)*subs({t=s,s=1},Q[n-1]))) od: for n from 1 to 9 do P[n]:=sort(subs(s=t,Q[n])): od: 1; for n from 1 to 9 do seq(coeff(P[n],t,j),j=1..2*n-2) od; # yields sequence in triangular form

Formula

The generating polynomial of row n is P(n,t)=Q(n,t,t), where Q(1,t,s)=t and Q(n,t,s)=tQ(n-1,t,s)+(t^n-t)Q(n-1,s,1)/(t-1) for n>=2.
Showing 1-2 of 2 results.