A121582 Number of cells in column 2 of all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
0, 1, 7, 40, 252, 1837, 15259, 141798, 1455694, 16360387, 199845957, 2637020884, 37388864368, 566971338009, 9157693715407, 156975522127762, 2846305448882274, 54432896145210943, 1095019542858729769
Offset: 1
Keywords
Examples
a(2)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 0 and 1 cells in their second columns.
References
- E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..400
Programs
-
Maple
a:=proc(n) if n=1 then 0 elif n=2 then 1 else ((2*n-3)*a(n-1)-(n-1)*a(n-2)+(n-1)!*(n-2)*(n^2-3*n+4)/2)/(n-2) fi end: seq(a(n),n=1..22);
-
Mathematica
RecurrenceTable[{a[1]==0,a[2]==1,a[n]==((2n-3)a[n-1]-(n-1)a[n-2]+ (n-1)!(n-2) (n^2-3n+4)/2)/(n-2)},a,{n,20}] (* Harvey P. Dale, Oct 23 2012 *)
Formula
a(1)=0, a(2)=1, a(n)=[(2n-3)a(n-1)-(n-1)a(n-2)+(n-1)!(n-2)(n^2-3n+4)/2]/(n-2) for n>=3.
a(n) ~ n*n!/2. - Vaclav Kotesovec, Aug 15 2013
D-finite with recurrence (-49*n+454)*a(n) +(49*n^2-454*n-1328)*a(n-1) +(49*n^2+1553*n-1464)*a(n-2) +(-581*n^2+612*n+1035)*a(n-3) +(819*n^2-3682*n+4007)*a(n-4) -4*(84*n-169)*(n-4)*a(n-5)=0. - R. J. Mathar, Jul 26 2022
Comments