A121581 Triangle read by rows: T(n,k) is the number of deco polyominoes of height n having k cells in the second column (n>=1, k>=0). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
1, 1, 1, 1, 3, 2, 1, 9, 11, 3, 1, 33, 43, 39, 4, 1, 153, 193, 199, 169, 5, 1, 873, 1057, 1099, 1081, 923, 6, 1, 5913, 6937, 7147, 7171, 7027, 6117, 7, 1, 46233, 53017, 54187, 54403, 54307, 53413, 47311, 8, 1, 409113, 461257, 468907, 470203, 470323, 469483, 463399
Offset: 1
Examples
T(2,0)=1 and T(2,1)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 0 and 1 cells in their second columns. Triangle starts: 1; 1,1; 1,3,2; 1,9,11,3; 1,33,43,39,4;
References
- E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
Programs
-
Maple
Q[1]:=t: for n from 2 to 11 do Q[n]:=expand(simplify(t*Q[n-1]+(t^n-t)/(t-1)*subs({t=s,s=1},Q[n-1]))): P[1]:=1: P[n]:=subs(t=1,Q[n]): od: for n from 1 to 11 do seq(coeff(P[n],s,j),j=0..n-1) od; # yields sequence in triangular form
Formula
The generating polynomial of row n is P(n,s)=Q(n,1,s), where Q(1,t,s)=t and Q(n,t,s)=tQ(n-1,t,s)+(t^n-t)Q(n-1,s,1)/(t-1) for n>=2.
Extensions
Keyword tabf changed to tabl by Michel Marcus, Apr 09 2013
Comments