A100832 Amenable numbers: n such that there exists a multiset of integers (s(1), ..., s(n)) whose size, sum and product are all n.
1, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60, 61, 64, 65, 68, 69, 72, 73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93, 96, 97, 100, 101, 104, 105, 108, 109, 112, 113, 116, 117, 120, 121, 124, 125, 128, 129, 132
Offset: 1
Keywords
Examples
5 and 8, for instance, are in the sequence because we have 5 = 1-1+1-1+5 = 1*(-1)*1*(-1)*5 and 8 = 1-1+1-1+1+1+2+4 = 1*(-1)*1*(-1)*1*1*2*4.
Links
- O. P. Lossers, Solution to problem 10454: Amenable Numbers, Amer. Math. Monthly Vol. 105 No. 4 April 1998.
- Eric Weisstein's World of Mathematics, Amenable Number
- Wikipedia, Amenable number
- Index entries for linear recurrences with constant coefficients, signature (1, 1, -1).
Formula
From Colin Barker, Jan 26 2012: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3), n > 4.
G.f.: x*(1+3*x)*(1+x-x^2)/(1-x-x^2+x^3). (End)
Extensions
More terms from David W. Wilson, Jan 24 2005
Comments