cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100862 Triangle read by rows: T(n,k) is the number of k-matchings of the corona K'(n) of the complete graph K(n) and the complete graph K(1); in other words, K'(n) is the graph constructed from K(n) by adding for each vertex v a new vertex v' and the edge vv'.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 21, 10, 1, 1, 15, 55, 55, 15, 1, 1, 21, 120, 215, 120, 21, 1, 1, 28, 231, 665, 665, 231, 28, 1, 1, 36, 406, 1736, 2835, 1736, 406, 36, 1, 1, 45, 666, 3990, 9891, 9891, 3990, 666, 45, 1, 1, 55, 1035, 8310, 29505, 45297, 29505, 8310, 1035, 55, 1, 1, 66, 1540, 16005, 77715, 173712, 173712, 77715, 16005, 1540, 66, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 08 2005

Keywords

Comments

Row n has n+1 terms.
Row sums yield A005425.

Examples

			T(3,2)=6 because in the graph with vertex set {A,B,C,a,b,c} and edge set {AB,AC,BC,Aa,Bb,Cc} we have the following six 2-matchings: {Aa,BC},{Bb,AC},{Cc,AB},{Aa,Bb},{Aa,Cc} and {Bb,Cc}.
Triangle starts:
  1;
  1,  1;
  1,  3,  1;
  1,  6,  6,  1;
  1, 10, 21, 10,  1;
  1, 15, 55, 55, 15,  1;
		

Crossrefs

Cf. A005425.
Cf. A107102 (matrix inverse).

Programs

  • Maple
    P[0]:=1: for n from 1 to 11 do P[n]:=sort(expand((1+t)*P[n-1]+(n-1)*t*P[n-2])) od: for n from 0 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # gives the sequence in triangular form
  • Mathematica
    P[0] = 1; P[1] = 1+t; P[n_] := P[n] = (1+t) P[n-1] + (n-1) t P[n-2];
    Table[CoefficientList[P[n], t], {n, 0, 11}] // Flatten (* Jean-François Alcover, Jul 23 2018 *)
  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); n!*polcoeff(polcoeff(exp(X+Y*X^2/2+X*Y),n,x),k,y)} \\ Paul D. Hanna, Jul 18 2005

Formula

T(n,k) = T(n,n-k).
E.g.f.: exp(z+t*z+t*z^2/2).
Row generating polynomial P[n] = [ -i*sqrt(t/2)]^n*H(n, i(1+t)/sqrt(2t)), where H(n, x) is a Hermite polynomial and i=sqrt(-1).
Row generating polynomials P[n] satisfy P[0]=1, P[n]=(1+t)P[n-1]+(n-1)tP[n-2].
From Fabián Pereyra, Jan 05 2022: (Start)
T(n,k) = T(n-1,k) + (n-1)*T(n-2,k-1) + T(n-1,k-1), n>=0, 0<=k<=n; T(0,0) = 1.
T(n,k) = Sum_{j=k..n} C(n,j)*B(j,j-k), where B are the Bessel numbers A100861. (End)