A100882 Number of partitions of n in which the sequence of frequencies of the summands is nonincreasing.
1, 1, 2, 3, 4, 5, 8, 8, 12, 14, 18, 21, 29, 29, 40, 47, 56, 62, 83, 86, 111, 124, 146, 166, 207, 217, 267, 300, 352, 389, 471, 505, 604, 668, 772, 860, 1015, 1085, 1279, 1419, 1622, 1780, 2072, 2242, 2595, 2858, 3231, 3563, 4092, 4421, 5057, 5557, 6250
Offset: 0
Keywords
Examples
a(4) = 4 because in each of the partitions 4, 3+1, 2+2, 1+1+1+1, the frequencies of the summands is nonincreasing as the summands decrease. The partition 2+1+1 is not counted because 2 is used once, but 1 is used twice.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n,i,t) option remember; if n<0 then 0 elif n=0 then 1 elif i=1 then `if`(n<=t, 1, 0) elif i=0 then 0 else b(n, i-1, t) +add(b(n-i*j, i-1, j), j=1..min(t, floor(n/i))) fi end: a:= n-> b(n, n, n): seq(a(n), n=0..60); # Alois P. Heinz, Feb 21 2011
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = Which[n<0, 0, n == 0, 1, i == 1, If[n <= t, 1, 0], i == 0, 0, True, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, 1, Min[t, Floor[n/i]]}]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Feb 21 2011