cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100888 Expansion of (3+x-x^2)/((1+x+x^2)(1-x-x^2)).

Original entry on oeis.org

3, 1, 2, 7, 7, 12, 23, 33, 54, 91, 143, 232, 379, 609, 986, 1599, 2583, 4180, 6767, 10945, 17710, 28659, 46367, 75024, 121395, 196417, 317810, 514231, 832039, 1346268, 2178311, 3524577, 5702886, 9227467, 14930351, 24157816, 39088171, 63245985
Offset: 0

Views

Author

Creighton Dement, Nov 21 2004

Keywords

Comments

This sequence was investigated in cooperation with Paul Barry. Generating floretion: - 0.5'i - 0.5'k - 0.5j' - 0.5'ii' + 0.5'jj' - 0.5'kk' + 0.5'ik' - 0.5'ki' ("jes"). A100885(n) = (1/2)(A100886(n) + A100887(n) - a(n)).

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[1] = 1; a[2] = 2; a[3] = 7; a[n_] := a[n] = a[n - 2] + 2a[n - 3] + a[n - 4]; Table[ a[n], {n, 0, 37}] (* Robert G. Wilson v, Nov 26 2004 *)
    CoefficientList[ Series[(3 + x - x^2)/((1 + x + x^2)(1 - x - x^2)), {x, 0, 37}], x] (* Robert G. Wilson v, Nov 26 2004 *)
  • PARI
    Vec((3+x-x^2)/((1+x+x^2)*(1-x-x^2))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = Fib(n+2) + sqrt(3)cos(2Pi*n/3 + Pi/6) + sin(2Pi*n/3 + Pi/6); a(n) = a(n-2) + 2a(n-3) + a(n-4), a(0) = 3, a(1) = 1, a(2) = 2, a(3) = 7.

Extensions

More terms from Robert G. Wilson v, Nov 26 2004