A100522 Number of partitions of n into parts free of both odd squares and even numbers which are not squares, the odd parts they occur with a single multiplicity, there is no restriction on the even parts.
1, 0, 0, 1, 1, 1, 0, 2, 2, 1, 1, 3, 3, 2, 2, 5, 6, 3, 5, 8, 9, 7, 8, 13, 14, 10, 14, 19, 20, 17, 20, 29, 30, 26, 32, 42, 45, 41, 47, 63, 64, 60, 70, 88, 91, 87, 99, 124, 128, 123, 143, 172, 179, 176, 200, 240, 246, 246, 279, 325, 337, 338, 381, 440, 456, 461, 519, 590, 615
Offset: 0
Keywords
Examples
a(16)=6 because 16 = 13+3 = 11+5 = 7+5+4 = 5+3+4+4 = 4+4+4+4.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011, 2004.
Crossrefs
Cf. A100926.
Programs
-
Magma
m:=80; f:= func< x | (&*[(1+x^(2*k-1))/(1-(-1)^k*x^(k^2)): k in [1..m+2]]) >; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( f(x) )); // G. C. Greubel, Mar 28 2023 -
Maple
series(product((1+x^(2*k-))/(1-(-1)^k*x^(k^2)),k=1..100),x=0,100);
-
Mathematica
With[{m=80}, CoefficientList[Series[Product[(1+x^(2*k-1))/(1-(-1)^k *x^(k^2)), {k,m+2}], {x,0,m}], x]] (* G. C. Greubel, Mar 28 2023 *)
-
SageMath
m=80 def f(x): return product( (1+x^(2*k-1))/(1-(-1)^k*x^(k^2)) for k in range(1,m+2)) def A100522_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( f(x) ).list() A100522_list(m) # G. C. Greubel, Mar 28 2023
Formula
G.f.: Product_{k>0} (1+x^(2*k-1))/(1-(-1)^k*x^(k^2)).
Extensions
Offset corrected by G. C. Greubel, Mar 28 2023