A100956 Consider all (2n+1)-digit palindromic primes of the form 70...0M0...07 (so that M is a palindrome with <= 2n-1 digits); a(n) = smallest such M.
2, 2, 141, 2, 545, 5, 141, 282, 111, 3, 141, 5, 131, 282, 141, 141, 9, 3, 2, 303, 171, 6, 222, 323, 2, 393, 797, 606, 191, 404, 414, 363, 797, 171, 474, 737, 25752, 545, 20502, 14241, 848, 12821, 15951, 474, 575, 12321, 2, 17771, 8, 666, 14541, 15651, 171, 191
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
f[n_] := Block[{k = 0, t = Flatten[ Join[{7}, Table[0, {n - 1}]]]}, While[s = Drop[t, Min[ -Floor[ Log[10, k]/2], 0]]; k != FromDigits[ Reverse[ IntegerDigits[k]]] || !PrimeQ[ FromDigits[ Join[s, IntegerDigits[k], Reverse[s]]]], k++ ]; k]; Table[ f[n], {n, 55}]