cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A100955 Consider all (2n+1)-digit palindromic primes of the form 30...0M0...03 (so that M is a palindrome with <= 2n-1 digits); a(n) = smallest such M.

Original entry on oeis.org

1, 1, 1, 2, 5, 2, 2, 8, 5, 434, 5, 313, 272, 838, 5, 272, 8, 505, 1, 7, 212, 7, 151, 686, 2, 242, 656, 656, 323, 929, 121, 242, 262, 12521, 454, 949, 353, 2, 16361, 707, 10301, 515, 29092, 454, 13331, 686, 848, 20602, 1, 484, 737, 101, 242, 121, 15551, 656, 232
Offset: 1

Views

Author

Robert G. Wilson v, Nov 23 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 0, t = Flatten[ Join[{3}, Table[0, {n - 1}]]]}, While[s = Drop[t, Min[ -Floor[ Log[10, k]/2], 0]]; k != FromDigits[ Reverse[ IntegerDigits[k]]] || !PrimeQ[ FromDigits[ Join[s, IntegerDigits[k], Reverse[s]]]], k++ ]; k]; Table[ f[n], {n, 57}]

A100956 Consider all (2n+1)-digit palindromic primes of the form 70...0M0...07 (so that M is a palindrome with <= 2n-1 digits); a(n) = smallest such M.

Original entry on oeis.org

2, 2, 141, 2, 545, 5, 141, 282, 111, 3, 141, 5, 131, 282, 141, 141, 9, 3, 2, 303, 171, 6, 222, 323, 2, 393, 797, 606, 191, 404, 414, 363, 797, 171, 474, 737, 25752, 545, 20502, 14241, 848, 12821, 15951, 474, 575, 12321, 2, 17771, 8, 666, 14541, 15651, 171, 191
Offset: 1

Views

Author

Robert G. Wilson v, Nov 23 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 0, t = Flatten[ Join[{7}, Table[0, {n - 1}]]]}, While[s = Drop[t, Min[ -Floor[ Log[10, k]/2], 0]]; k != FromDigits[ Reverse[ IntegerDigits[k]]] || !PrimeQ[ FromDigits[ Join[s, IntegerDigits[k], Reverse[s]]]], k++ ]; k]; Table[ f[n], {n, 55}]
Showing 1-2 of 2 results.