A100955 Consider all (2n+1)-digit palindromic primes of the form 30...0M0...03 (so that M is a palindrome with <= 2n-1 digits); a(n) = smallest such M.
1, 1, 1, 2, 5, 2, 2, 8, 5, 434, 5, 313, 272, 838, 5, 272, 8, 505, 1, 7, 212, 7, 151, 686, 2, 242, 656, 656, 323, 929, 121, 242, 262, 12521, 454, 949, 353, 2, 16361, 707, 10301, 515, 29092, 454, 13331, 686, 848, 20602, 1, 484, 737, 101, 242, 121, 15551, 656, 232
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
f[n_] := Block[{k = 0, t = Flatten[ Join[{3}, Table[0, {n - 1}]]]}, While[s = Drop[t, Min[ -Floor[ Log[10, k]/2], 0]]; k != FromDigits[ Reverse[ IntegerDigits[k]]] || !PrimeQ[ FromDigits[ Join[s, IntegerDigits[k], Reverse[s]]]], k++ ]; k]; Table[ f[n], {n, 57}]