A100957 Consider all (2n+1)-digit palindromic primes of the form 90...0M0...09 (so that M is a palindrome with <= 2n-1 digits); a(n) = smallest such M.
1, 7, 2, 1, 2, 5, 838, 232, 121, 8, 151, 202, 2, 101, 646, 5, 1, 151, 424, 404, 242, 131, 646, 272, 16361, 1, 494, 1, 868, 101, 494, 12421, 14041, 151, 595, 383, 515, 19091, 10001, 242, 17171, 20602, 161, 292, 11011, 8, 1, 11611, 22822, 232, 17771, 616, 767
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
f[n_] := Block[{k = 0, t = Flatten[ Join[{9}, Table[0, {n - 1}]]]}, While[s = Drop[t, Min[ -Floor[ Log[10, k]/2], 0]]; k != FromDigits[ Reverse[ IntegerDigits[k]]] || !PrimeQ[ FromDigits[ Join[s, IntegerDigits[k], Reverse[s]]]], k++ ]; k]; Table[ f[n], {n, 55}]