cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100968 Integers that are Rhonda numbers to base 4.

Original entry on oeis.org

10206, 11935, 12150, 16031, 45030, 94185, 113022, 114415, 191149, 244713, 259753, 374782, 392121, 503773, 649902, 703326, 716250, 764526, 883630, 884446, 912766, 980694, 980837, 1005502, 1420250, 1474239, 1567335, 1685159, 1702822, 1824634, 1944190, 1948279
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 24 2004

Keywords

Comments

See sequence of base 10 Rhonda numbers for more information and links.

Examples

			10206 is a Rhonda number to base 4 because the product of its base 4 digits is 2*1*3*3*1*3*2=108, the sum of the prime factors of 10206 is 2+6*3+7=27 and 27*4=108.
From _Reinhard Zumkeller_, Mar 05 2015: (Start)
a(18) = 764526 = 2*4^9 + 3*4^8 + 2*4^7 + 2*4^6 + 2*4^5 + 2*4^4 + 1*4^3 + 2*4^2 + 3*4^1 + 2*4^0 = 2*3*7*109*167
with 2*3*2*2*2*2*1*2*3*2 = 4 * (2+3+7+109+167) = 1152;
a(21) = 912766 = 3*4^9 + 1*4^8 + 3*4^7 + 2*4^6 + 3*4^5 + 1*4^4 + 1*4^3 + 3*4^2 + 3*4^1 + 2*4^0 = 2*53*79*109
with 3*1*3*2*3*1*1*3*3*2 = 4 * (2+53+79+109) = 972.  (End)
		

Crossrefs

Rhonda numbers to other bases: A100969 (base 6), A100970 (base 8), A100973 (base 9), A099542 (base 10), A100971 (base 12), A100972 (base 14), A100974 (base 15), A100975 (base 16), A255735 (base 18), A255732 (base 20), A255736 (base 30), A255731 (base 60), see also A255872.
Cf. A001414, A027746, A007090, subsequence of A023705.
Column k=1 of A291925.

Programs

  • Haskell
    a100968 n = a100968_list !! (n-1)
    a100968_list = filter (rhonda 4) a023705_list
    -- Function rhonda as in A099542.
    -- Reinhard Zumkeller, Mar 08 2015
  • Mathematica
    A100968Q[k_] := Times @@ IntegerDigits[k, 4] == 4*Total[Times @@@ FactorInteger[k]];
    Select[Range[2000000], A100968Q] (* Paolo Xausa, Jul 01 2025 *)

Extensions

a(18) and a(21) corrected, terms a(24) - a(32) by Reinhard Zumkeller, Mar 05 2015