cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100983 Number of Q_2-isomorphism classes of fields of degree n in the algebraic closure of Q_2.

Original entry on oeis.org

1, 7, 2, 59, 2, 47, 2
Offset: 1

Views

Author

Volker Schmitt (clamsi(AT)gmx.net), Nov 29 2004

Keywords

Examples

			a(4)=59: There is the one unramified extension, 8 total ramified cyclic extensions, three wildly ramified cyclic extensions, seven ( 4 total ramified, 3 tamely ramified) extensions with Galoisgroup C_2 x C_2, 36 extensions with Galoisgroup D_8 (32 total ramified, 4 wildly ramified), one extension (Q_2[x]/(x^4+2*x^3+2*x^2+2)) with Galoisgroup A_4 and, three extensions (all total ramified) with Galoisgroup S_4.
This gives 1+8+3+7+2*36+4*1+4*3=107 extensions in 1+8+3+7+36+1+3=59 Q_2-isomorphism classes.
		

References

  • M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962
  • Volker Schmitt, Implementation einer p-adischen Arithmetik mit darstellungstheoretischen Anwendungen, 1996

Crossrefs

Programs

  • Maple
    # for gcd(e,p)=1 only!
    # which means the program produces wrong values in general if n is even!
    smallestIntDiv:=proc() local b,q,h,i; b:=args[1]; q:=args[2]; h:=args[3]; for i from 1 to infinity do if gcd(b,(q^i-1)*h)=b then return i; fi; od; end:
    I0Ffefe:=proc() local p,f1,e1,f,e,i,q,h,summe,c,b; p:=args[1]; f1:=args[2]; e1:=args[3]; f:=args[4]; e:=args[5]; summe:=0; q:=p^f1; b:=gcd(e,q^f-1); for h from 0 to e-1 do c:=smallestIntDiv(b,q,h); summe:=summe+1/c; od; return b/e*summe; end:
    I0Ffen:=proc() local p,e1,f1,n,f,e,summe; p:=args[1]; e1:=args[2]; f1:=args[3]; n:=args[4]; summe:=0; for f in divisors(n) do e:=n/f; summe:=summe+I0Ffefe(p,f1,e1,f,e); od; return summe; end:
    p:=2; a(n):=I0Ffen(p,1,1,n);

Formula

n=f*e; f residue degree, e ramification index if (p, e)=1, let I(f, e):=b/e*Sum_{h=0..e-1} 1/c_h, where b=gcd(e, p^f-1), c_h the smallest positive integer such that b divides (p^c-1)*h a(n) = sum_{f | n} I(f, n/f) There exists a formula, when p divides e exactly and there exists a big formula for some cases when p^2 divides e exactly.