cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100985 Number of Q_5-isomorphism classes of fields of degree n in the algebraic closure of Q_5.

Original entry on oeis.org

1, 3, 2, 7, 26, 7, 2, 11, 3, 378, 2, 17, 2, 6, 1012, 17, 2, 11, 2, 22302, 4, 6, 2, 29, 397515, 6, 4, 14, 2, 406902, 2, 23, 4, 6, 535732, 27, 2, 6, 4, 19437446, 2, 15, 2, 14, 16927758, 6, 2, 49, 3
Offset: 1

Views

Author

Volker Schmitt (clamsi(AT)gmx.net), Nov 29 2004

Keywords

Examples

			a(3)=2. There is the one unramified extension Q_125, one ramified with Galoisgroup S_3 Q_5[x]/(x^3+5). There are 1+3*1=4 extensions (Cf. A100978) in 1+1=2 Q_5-isomorphism classes.
		

References

  • M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.

Crossrefs

Programs

  • Maple
    # for gcd(e,p)=1 only!
    smallestIntDiv:=proc() local b,q,h,i; b:=args[1]; q:=args[2]; h:=args[3]; for i from 1 to infinity do if gcd(b,(q^i-1)*h)=b then return i; fi; od; end:
    I0Ffefe:=proc() local p,f1,e1,f,e,i,q,h,summe,c,b; p:=args[1]; f1:=args[2]; e1:=args[3]; f:=args[4]; e:=args[5]; summe:=0; q:=p^f1; b:=gcd(e,q^f-1); for h from 0 to e-1 do c:=smallestIntDiv(b,q,h); summe:=summe+1/c; od; return b/e*summe; end:
    I0Ffen:=proc() local p,e1,f1,n,f,e,summe; p:=args[1]; e1:=args[2]; f1:=args[3]; n:=args[4]; summe:=0; for f in divisors(n) do e:=n/f; summe:=summe+I0Ffefe(p,f1,e1,f,e); od; return summe; end:
    p:=5; a(n):=I0Ffen(p,1,1,n);

Formula

p:=5; n=f*e; f residue degree, e ramification index if (p, e)=1, let I(f, e):=b/e*Sum_{h=0..e-1} 1/c_h, where b=gcd(e, p^f-1), c_h the smallest positive integer such that b divides (p^c-1)*h a(n) = sum_{f | n} I(f, n/f) There exists a formula, when p divides e exactly and there exists a big formula for some cases when p^2 divides e exactly.