A100986 Smallest k such that concatenation of r*k and 1 is a prime for all r = 1 to n but not prime for r = n+1, or smallest k such that 10*r*k+1 is a prime for all r = 1 to n but not prime for r = n+1.
1, 3, 21, 33, 1083, 2541, 822486, 51282, 1296060612
Offset: 1
Examples
a(4)=33 because 331, 661, 991 and 1321 (1321=10*4*33+1) are all prime, but 1651 (1651=10*5*33+1) is not prime. - _Robert Price_, Apr 02 2019
Crossrefs
Cf. A089323.
Programs
-
Mathematica
Table[k = 1; While[! AllTrue[Table[10*r*k + 1, {r, 1, n}], PrimeQ] || PrimeQ[10*(n + 1)*k + 1], k++]; k, {n, 1, 9}] (* Robert Price, Apr 02 2019 *)
-
PARI
isok(k, n) = {for (r=1, n, if (! isprime(10*r*k+1), return (0));); !isprime(10*(n+1)*k+1);} a(n) = {my(k=1); while(! isok(k, n), k++); k;} \\ Michel Marcus, Apr 03 2019
Extensions
Corrected a(7) and added a(9) by Robert Price, Apr 02 2019
Comments