cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101030 Triangle read by rows: T(n,k) = number of functions from an n-element set into but not onto a k-element set.

Original entry on oeis.org

0, 0, 2, 0, 2, 21, 0, 2, 45, 232, 0, 2, 93, 784, 3005, 0, 2, 189, 2536, 13825, 45936, 0, 2, 381, 7984, 61325, 264816, 818503, 0, 2, 765, 24712, 264625, 1488096, 5623681, 16736896, 0, 2, 1533, 75664, 1119005, 8172576, 38025127, 132766208, 387057609, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 26 2004

Keywords

Examples

			T(3,3) = #(functions into) - #(functions onto) = 3^3 - 6 = 21
Triangle T(n,k) begins:
  0,
  0, 2;
  0, 2,   21;
  0, 2,   45,   232;
  0, 2,   93,   784,    3005;
  0, 2,  189,  2536,   13825,   45936;
  0, 2,  381,  7984,   61325,  264816,   818503;
  0, 2,  765, 24712,  264625, 1488096,  5623681,  16736896;
  0, 2, 1533, 75664, 1119005, 8172576, 38025127, 132766208, 387057609;
		

Crossrefs

Cf. A199656, A036679 (diagonal).

Programs

  • Maple
    T:=(n, k)->sum((-1)^(j-1)*binomial(k, j)*(k-j)^n, j=1..k);
    seq(seq(T(n, k), k=1..n), n=1..15); # Dennis P. Walsh, Apr 13 2016

Formula

T(n,k) = A089072(n,k) - A019538(n,k).
T(n,k) = Sum_{j=1..k} (-1)^(j-1)*C(k,j)*(k-j)^n. - Dennis P. Walsh, Apr 13 2016
T(n,k) = k^n - k!*Stirling2(n,k). - Dennis P. Walsh, Apr 13 2016

Extensions

Offset corrected from 0 to 1 by Dennis P. Walsh, Apr 13 2016