A101091 Fourth partial sums of fourth powers (A000583).
1, 20, 155, 760, 2814, 8592, 22770, 54120, 117975, 239668, 459173, 837200, 1463020, 2464320, 4019412, 6372144, 9849885, 14884980, 22040095, 32037896, 45795530, 64464400, 89475750, 122592600, 165968595, 222214356, 294471945, 386498080
Offset: 1
Links
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube. [Dead link]
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube. [Cached copy, May 15 2013]
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
Mathematica
Nest[Accumulate,Range[30]^4,4] (* or *) LinearRecurrence[ {9,-36,84,-126,126,-84,36,-9,1},{1,20,155,760,2814,8592,22770,54120,117975},30] (* Harvey P. Dale, Dec 30 2011 *)
Formula
a(n) = n*(1 + n)*(2 + n)^2*(3 + n)*(4 + n)*(-1 + 3*n*(4 + n))/5040.
a(1)=1, a(2)=20, a(3)=155, a(4)=760, a(5)=2814, a(6)=8592, a(7)=22770, a(8)=54120, a(9)=117975, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)- 126*a(n-4)+ 126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Harvey P. Dale, Dec 30 2011
G.f.: x*(1+x)*(1+10*x+x^2)/(1-x)^9. - Colin Barker, Apr 04 2012
Sum_{n>=1} 1/a(n) = 3934693/3380 - 210*Pi^2/13 - (2268/13)*sqrt(3/13)*Pi*cot(sqrt(13/3)*Pi). - Amiram Eldar, Jan 26 2022
Extensions
Edited by Ralf Stephan, Dec 16 2004