cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101091 Fourth partial sums of fourth powers (A000583).

Original entry on oeis.org

1, 20, 155, 760, 2814, 8592, 22770, 54120, 117975, 239668, 459173, 837200, 1463020, 2464320, 4019412, 6372144, 9849885, 14884980, 22040095, 32037896, 45795530, 64464400, 89475750, 122592600, 165968595, 222214356, 294471945, 386498080
Offset: 1

Views

Author

Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Nest[Accumulate,Range[30]^4,4] (* or *) LinearRecurrence[ {9,-36,84,-126,126,-84,36,-9,1},{1,20,155,760,2814,8592,22770,54120,117975},30] (* Harvey P. Dale, Dec 30 2011 *)

Formula

a(n) = n*(1 + n)*(2 + n)^2*(3 + n)*(4 + n)*(-1 + 3*n*(4 + n))/5040.
a(1)=1, a(2)=20, a(3)=155, a(4)=760, a(5)=2814, a(6)=8592, a(7)=22770, a(8)=54120, a(9)=117975, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)- 126*a(n-4)+ 126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Harvey P. Dale, Dec 30 2011
G.f.: x*(1+x)*(1+10*x+x^2)/(1-x)^9. - Colin Barker, Apr 04 2012
Sum_{n>=1} 1/a(n) = 3934693/3380 - 210*Pi^2/13 - (2268/13)*sqrt(3/13)*Pi*cot(sqrt(13/3)*Pi). - Amiram Eldar, Jan 26 2022

Extensions

Edited by Ralf Stephan, Dec 16 2004