A101172 Sequence whose Mobius transform leads to the first differences of the terms.
1, 2, 3, 5, 8, 15, 26, 51, 97, 191, 373, 745, 1472, 2943, 5859, 11708, 23365, 46729, 93349, 186697, 373200, 746372, 1492370, 2984739, 5968687, 11937366, 23873259, 47746421, 95489896, 190979791, 381953529, 763907057, 1527802406, 3055604437, 6111185508
Offset: 1
Examples
For example, the Mobius transform of the segment [1,2,3,5,8] begins [1,1,2,3], which are the first differences of these terms.
Programs
-
Maple
with(numtheory): F:={1}: f:=n->F[n]: g:=n->sum(mobius(divisors(n)[j])*f(n/divisors(n)[j]),j=1..tau(n)): for n from 1 to 35 do F:=F union {F[nops(F)]+g(n)} od: G:=sort(convert(F,list)); # Emeric Deutsch, Feb 15 2005
Extensions
Corrected and extended by Emeric Deutsch, Feb 15 2005
a(33) onward corrected by Sean A. Irvine, May 01 2025
Comments