A101186 Values of k for which 7m+1, 8m+1 and 11m+1 are prime, with m = 1848k + 942.
13, 123, 218, 223, 278, 411, 513, 551, 588, 733, 743, 796, 856, 928, 1168, 1226, 1263, 1401, 1533, 1976, 1981, 2013, 2096, 2138, 2241, 2376, 2556, 2676, 2703, 3626, 3703, 3718, 3971, 4008, 4121, 4138, 4163, 4188, 4211, 4313, 4423, 4653, 4656, 4901, 5018
Offset: 1
Keywords
Examples
a(1)=13 because k=13 corresponds to m=24966, which yields a product of three primes (7m+1)(8m+1)(11m+1) equal to the Carmichael number 9585921133193329. (Among all Carmichael numbers with 16 or fewer digits, as first listed by Richard G. E. Pinch, this one features the largest "least prime factor".)
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Gérard P. Michon, Generic Carmichael Numbers.
Programs
-
Magma
[k:k in [1..5100]| forall{s:s in [7,8,11]|IsPrime(m*s+1) where m is 1848*k+942}]; // Marius A. Burtea, Nov 01 2019
-
Maple
filter:= proc(n) local m; m:= 1848*n+942; andmap(isprime,[7*m+1,8*m+1,11*m+1]) end proc: select(filter, [$1..10000]); # Robert Israel, May 14 2019
-
Mathematica
q[k_] := Module[{m = 1848*k + 942}, PrimeQ[7*m + 1] && PrimeQ[8*m + 1] && PrimeQ[11*m + 1]]; Select[Range[6000], q] (* Amiram Eldar, Apr 27 2024 *)
-
PARI
is(k) = {my(m = 1848*k + 942); isprime(7*m + 1) && isprime(8*m + 1) && isprime(11*m + 1);} \\ Amiram Eldar, Apr 27 2024
Comments