A101193 G.f. defined as the limit: A(x) = lim_{n->oo} F(n)^(1/4^(n-1)) where F(n) is the n-th iteration of: F(0) = 1, F(n) = F(n-1)^4 + (4x)^((4^n-1)/3) for n >= 1.
1, 4, 0, 0, 0, 256, -3072, 24576, -163840, 983040, -5603328, 32112640, -195035136, 1283457024, -8975810560, 64281903104, -458387095552, 3216662069248, -22225382014976, 152271623028736, -1043452104015872, 7199883459035136, -50175319780360192, 353054558068408320
Offset: 0
Keywords
Examples
The iteration begins: F(0) = 1, F(1) = 1 + 4*x, F(2) = 1 + 16*x + 96*x^2 + 256*x^3 + 256*x^4 + 1024*x^5, F(3) = 1 + 64*x + 1920*x^2 + 35840*x^3 + ... + 4398046511104*x^21. The 4^(n-1)-th roots of F(n) tend to the limit of A(x): F(1)^(1/4^0) = 1 + 4*x F(2)^(1/4^1) = 1 + 4*x + 256*x^5 - 3072*x^6 + 24576*x^7 - 163840*x^8 + ... F(3)^(1/4^2) = 1 + 4*x + 256*x^5 - 3072*x^6 + 24576*x^7 - 163840*x^8 + ...
Programs
-
PARI
{a(n)=local(F=1,A,L);if(n==0,A=1,L=ceil(log(n+1)/log(4)); for(k=1,L,F=F^4+(4*x)^((4^k-1)/3)); A=polcoeff((F+x*O(x^n))^(1/4^(L-1)),n));A}
Formula
G.f. begins: A(x) = (1+m*x) + m^m*x^(m+1)/(1+m*x)^(m-1) + ... at m=4.
Comments