A054471 Smallest prime p having n different cycles in decimal expansions of k/p, k=1..p-1.
7, 3, 103, 53, 11, 79, 211, 41, 73, 281, 353, 37, 2393, 449, 3061, 1889, 137, 2467, 16189, 641, 3109, 4973, 11087, 1321, 101, 7151, 7669, 757, 38629, 1231, 49663, 12289, 859, 239, 27581, 9613, 18131, 13757, 33931, 9161, 118901, 6763, 18233
Offset: 1
References
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 162.
- M. Gardner, Mathematical Circus, Cambridge University Press (1996).
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..65000 (first 1000 terms from _T. D. Noe_)
- H. Richter, The period length of the decimal expansion of a fraction
- Index entries for sequences related to decimal expansion of 1/n
Crossrefs
Programs
-
Mathematica
a[n_Integer] := Block[{m = If[ OddQ@ n, 2n, n]}, p = m +1; While[ !PrimeQ@ p || p != 1 + n*MultiplicativeOrder[10, p], p = p += m]; p]; a[1] = 7; a[4] = 53; Array[f, 50] (* Robert G. Wilson v, Apr 19 2005; revised Aug 20 2014 and Feb 14 2025 *)
Extensions
More terms from David W. Wilson, May 22 2000
Comments