A101224
Triangle, read by rows, where T(n,1) = n^2-n+1 for n>=1 and T(n,k) = (n-k+1)*floor( (T(n,k-1)-1)/(n-k+1) ) for 1A000960).
1, 3, 2, 7, 6, 5, 13, 12, 10, 9, 21, 20, 18, 16, 15, 31, 30, 28, 27, 26, 25, 43, 42, 40, 36, 33, 32, 31, 57, 56, 54, 50, 48, 45, 44, 43, 73, 72, 70, 66, 65, 64, 63, 62, 61, 91, 90, 88, 84, 78, 75, 72, 69, 68, 67, 111, 110, 108, 104, 98, 96, 95, 92, 90, 88, 87, 133, 132, 130, 126
Offset: 1
Examples
T(4,4) = 9 since we start with T(4,1)=4^2-4+1=13 and then T(4,2)=(4-2+1)*floor((T(4,1)-1)/(4-2+1))=3*floor((13-1)/3)=12, T(4,3)=(4-3+1)*floor((T(4,2)-1)/(4-3+1))=2*floor((12-1)/2)=10, T(4,4)=(4-4+1)*floor((T(4,3)-1)/(4-4+1))=1*floor((10-1)/1)=9. Rows begin: [1], [3,2], [7,6,5], [13,12,10,9], [21,20,18,16,15], [31,30,28,27,26,25], [43,42,40,36,33,32,31], [57,56,54,50,48,45,44,43], [73,72,70,66,65,64,63,62,61],...
Programs
-
PARI
T(n,k)=if(k==1,n^2-n+1,(n-k+1)*floor((T(n,k-1)-1)/(n-k+1)))
Formula
T(n, n) = A100287(n).
Comments