cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A096359 Numbers formed by the second nesting of pi(10^n).

Original entry on oeis.org

2, 9, 39, 201, 1184, 7702, 53911, 397557, 3048955, 24106415, 195296943, 1613846646, 13556756261, 115465507935, 995112599484, 8663956207026, 76105984161825, 673776962356604, 6006525919368810, 53878729390812464, 485986685605473234, 4405654516157364292, 40121204955640303216, 366893555203205479291
Offset: 1

Views

Author

Cino Hilliard, Jun 30 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ Nest[ PrimePi, 10^n, 2], {n, 13}] (* Robert G. Wilson v, Jul 01 2004 *)
  • PARI
    nestpi(n,m) = { for(x=1,n,z=10^x;for(y=1,m,z=abs(primepi(z)));print1(floor(z)",")) }

Formula

Let pi(n) = the number of primes <= n. Then a(n) = pi(pi(n))

Extensions

a(10) - a(15) from Robert G. Wilson v, Jul 01 2004
a(16) - a(19) from Henri Lifchitz, Nov 11 2012
a(20) - a(24) from Bayless, Table 1, p.7, Jonathan Vos Post, Aug 09 2013

A101226 Numbers formed by the fourth nesting of pi(10^n).

Original entry on oeis.org

0, 2, 5, 14, 44, 165, 725, 3607, 19624, 115127, 716177, 4675144, 31743253, 222710685, 1606581461, 11868655658, 89506275569, 687275710608, 5361744667232, 42423406909091, 339921273158836, 2754682455861719, 22553369622588850, 186375668479844528
Offset: 1

Views

Author

Cino Hilliard, Dec 15 2004

Keywords

Examples

			a(3) = pi(pi(pi(pi(10^3)))) = 5, the third entry in the table.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Nest[PrimePi, 10^n, 4]; Table[ f[n], {n, 13}] (* Robert G. Wilson v, Dec 21 2004 *)
  • PARI
    nestpi(n,m) = { my(x,y,z); for(x=1, n, z=10^x; for(y=1, m, z=primepi(z)); print1(z", ")) } \\ try call nestpi(11, 4)

Formula

a(n) = pi(pi(pi(pi(10^n)))) where pi(x) is the number of primes <= x.
a(n) = A000720(A101225(n)). - Amiram Eldar, Jun 29 2024

Extensions

a(10)-a(13) from Robert G. Wilson v, Dec 21 2004
a(14)-a(24) using Kim Walisch's primecount added by Amiram Eldar, Jun 29 2024
Showing 1-2 of 2 results.