A101285 Rounded frequencies in Hertz of the notes of the C major music scale beginning at A (A Minor equal-tempered).
55, 62, 65, 73, 82, 87, 98, 110, 123, 131, 147, 165, 175, 196, 220, 247, 262, 294, 330, 349, 392, 440, 494, 523, 587, 659, 698, 784, 880, 988, 1047, 1175, 1319, 1397, 1568, 1760, 1976, 2093, 2349, 2637, 2794, 3136, 3520, 3951, 4186, 4699, 5274, 5588, 6272
Offset: 1
Keywords
Links
- T. Yahaya Abdullah, Music Scales, part of Synthesizers, Music and Television.
- Wikipedia, Equal temperament
- Wikipedia, Aeolian scale
Programs
-
Maple
A101286x := proc(n) 55*2.0^((n-1)/12.0) ; end: A101285x := proc(n) if n >= 8 then 2*A101285x(n-7) ; else A101286x(op(n,[1,3,4,6,8,9,11])) ; fi ; end: A101285 := proc(n) round(A101285x(n)) ; end: seq(A101285(n),n=1..80) ; # R. J. Mathar, Mar 12 2008
-
Mathematica
Table[Round[55*2^((Floor[3(4k-1)/7]-1)/12)],{k,1,49}] (* Federico Provvedi, Feb 14 2014 *)
-
PARI
forstep(i = 0, 100, [2, 1, 2, 2, 1, 2, 2], print(round(55*2^(i/12)))) \\ David Wasserman, Mar 17 2008
Formula
From David Wasserman, Mar 17 2008: (Start)
a(7n) = round(55*2^(n-1/6));
a(7n+1) = 55*2^n;
a(7n+2) = round(55*2^(n+1/6));
a(7n+3) = round(55*2^(n+1/4));
a(7n+4) = round(55*2^(n+5/12));
a(7n+5) = round(110*2^(n-5/12));
a(7n+6) = round(110*2^(n-1/3)). (End)
a(n) = round(55*2^(int(3*(4*k-1)/7-1)/12)). - Federico Provvedi, Feb 14 2014
Extensions
More terms from Jonathan R. Love (japanada11(AT)yahoo.ca) and R. J. Mathar, Mar 08 2007
Comments