cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101285 Rounded frequencies in Hertz of the notes of the C major music scale beginning at A (A Minor equal-tempered).

Original entry on oeis.org

55, 62, 65, 73, 82, 87, 98, 110, 123, 131, 147, 165, 175, 196, 220, 247, 262, 294, 330, 349, 392, 440, 494, 523, 587, 659, 698, 784, 880, 988, 1047, 1175, 1319, 1397, 1568, 1760, 1976, 2093, 2349, 2637, 2794, 3136, 3520, 3951, 4186, 4699, 5274, 5588, 6272
Offset: 1

Views

Author

Angela Johansson (angvi798(AT)student.liu.se), Dec 20 2004

Keywords

Comments

The scale is equal-tempered ("Wohltemperiert"), introduced by Johann Sebastian Bach.
Subsequence of A101286, obtained by removal of the 5 black keys' frequencies in each block of 12 keys. - R. J. Mathar, Mar 12 2008

Crossrefs

Programs

  • Maple
    A101286x := proc(n) 55*2.0^((n-1)/12.0) ; end: A101285x := proc(n) if n >= 8 then 2*A101285x(n-7) ; else A101286x(op(n,[1,3,4,6,8,9,11])) ; fi ; end: A101285 := proc(n) round(A101285x(n)) ; end: seq(A101285(n),n=1..80) ; # R. J. Mathar, Mar 12 2008
  • Mathematica
    Table[Round[55*2^((Floor[3(4k-1)/7]-1)/12)],{k,1,49}] (* Federico Provvedi, Feb 14 2014 *)
  • PARI
    forstep(i = 0, 100, [2, 1, 2, 2, 1, 2, 2], print(round(55*2^(i/12)))) \\ David Wasserman, Mar 17 2008

Formula

From David Wasserman, Mar 17 2008: (Start)
a(7n) = round(55*2^(n-1/6));
a(7n+1) = 55*2^n;
a(7n+2) = round(55*2^(n+1/6));
a(7n+3) = round(55*2^(n+1/4));
a(7n+4) = round(55*2^(n+5/12));
a(7n+5) = round(110*2^(n-5/12));
a(7n+6) = round(110*2^(n-1/3)). (End)
a(n) = round(55*2^(int(3*(4*k-1)/7-1)/12)). - Federico Provvedi, Feb 14 2014

Extensions

More terms from Jonathan R. Love (japanada11(AT)yahoo.ca) and R. J. Mathar, Mar 08 2007