A101294 Numbers n such that omega(n-2) = omega(n-1) = omega(n) = omega(n+1) = omega(n+2).
56, 93, 94, 117, 143, 144, 145, 146, 160, 207, 214, 215, 216, 217, 297, 303, 325, 326, 327, 393, 537, 687, 723, 801, 1137, 1347, 1467, 1537, 1713, 1943, 1983, 2103, 2217, 2304, 2305, 2306, 2427, 2643, 2666, 2716, 3867, 3914, 4413
Offset: 1
Examples
143 is in the sequence because it has two unique prime factors (11 and 13), the same number as its two nearest neighbors on both sides (141 has 3 and 47, 142 has 2 and 71, 144 has 2 and 3 and 145 has 5 and 29).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
For[i=2, i<10000, If[And[Length[FactorInteger[i-2]]==Length[FactorInteger[i]], Length[FactorInteger[i-1]]==Length[FactorInteger[i]], Length[FactorInteger[i+1]]==Length[FactorInteger[i]], Length[FactorInteger[i+2]]==Length[FactorInteger[i]]], Print[i]];i++ ] Select[Range[600000], PrimeNu[# - 2] == PrimeNu[# - 1] == PrimeNu[#] == PrimeNu[# + 1] == PrimeNu[# + 2] &] (* G. C. Greubel, May 15 2017 *)
Extensions
Edited by N. J. A. Sloane, Mar 17 2007