A101309 Matrix logarithm of A047999 (Pascal's triangle mod 2).
0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0
Offset: 0
Examples
T(n,k)=1 when n XOR k is a power of 2: T(3,2)=1 since 3 XOR 2 = 2^0, T(4,0)=1 since 4 XOR 0 = 2^2, T(5,1)=1 since 5 XOR 1 = 2^2, T(6,4)=1 since 6 XOR 4 = 2^2. Rows begin: [0], [1, 0], [1,0, 0], [0,1, 1,0], [1,0,0,0, 0], [0,1,0,0, 1,0], [0,0,1,0, 1,0,0], [0,0,0,1, 0,1,1,0],...
Programs
-
PARI
T(n,k)=if(n>k&bitxor(n,k)==2^valuation(bitxor(n,k),2),1,0)
Formula
T(n, k)=1 when n XOR k = 2^m for integer m>=0, T(n, k)=0 elsewhere.
Comments