cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226278 Decimal expansion of the number x > 1 defined by 2*log(x) = x - 1.

Original entry on oeis.org

3, 5, 1, 2, 8, 6, 2, 4, 1, 7, 2, 5, 2, 3, 3, 9, 3, 5, 3, 9, 6, 5, 4, 7, 5, 2, 3, 3, 2, 1, 8, 4, 3, 2, 6, 5, 3, 8, 3, 2, 8, 3, 3, 6, 6, 3, 4, 0, 2, 6, 4, 7, 4, 2, 2, 2, 5, 1, 7, 8, 9, 4, 5, 4, 0, 9, 6, 6, 0, 0, 9, 5, 7, 0, 8, 2, 1, 0, 3, 8, 0, 7, 0, 6, 7, 3, 2, 9, 5, 0, 1, 8, 9, 4, 5, 0, 1, 6, 9, 7, 8, 8, 4, 0, 5
Offset: 1

Views

Author

Keywords

Comments

There are two solutions to the equation 2*log(x) = x - 1: {1, 3.51286...}.
Apart from the leading digit the same as A201890. - R. J. Mathar, Jun 05 2013

Examples

			x = 3.512862417252339353965475233218432653832833663402647422251789454...
		

Crossrefs

Programs

  • Maple
    Digits := 100; evalf([solve(2*ln(n)=n-1,n)]);
  • Mathematica
    RealDigits[x /. FindRoot[2*Log[x] == x - 1, {x, 3.5}, WorkingPrecision -> 110]][[1]]
    RealDigits[N[Exp[-ProductLog[-1,-1/(2*Sqrt[E])]-1/2],110]][[1]] (* Natalia L. Skirrow, Jul 13 2025 *)
  • PARI
    solve(x=3,4,2*log(x)-x+1) \\ Charles R Greathouse IV, Jun 05 2013

Formula

Equals 1 + A201890.
Equals exp(-LambertW_-1(-1/(2*sqrt(e)))-1/2). - Natalia L. Skirrow, Jul 13 2025
Equals 1/A101314 = exp(A202343). - Hugo Pfoertner, Jul 13 2025

A226604 Decimal expansion of the maximum value reached by the function x-x^2+x^2 log(x) in the interval [0,1].

Original entry on oeis.org

1, 0, 1, 8, 1, 6, 0, 9, 4, 3, 9, 7, 2, 6, 8, 4, 3, 7, 5, 3, 4, 8, 2, 3, 2, 1, 5, 2, 6, 3, 0, 5, 5, 8, 1, 1, 9, 5, 8, 7, 5, 2, 3, 8, 1, 5, 3, 1, 3, 9, 5, 7, 4, 7, 3, 6, 7, 4, 3, 6, 4, 4, 8, 3, 7, 2, 8, 9, 3, 2, 3, 6, 3
Offset: 0

Views

Author

Keywords

Comments

Equals (c-c^2)/2 where c = A101314.

Examples

			0.1018160943972684375348232152630558119587523815313957473674364483728932...
		

Crossrefs

Cf. A101314.

Programs

  • Mathematica
    EE = -1/2/ ProductLog[-1, -1/2/Sqrt[E]]; RealDigits[N[(EE - EE^2)/2, 100]][[1]]

Extensions

Offset corrected by Rick L. Shepherd, Jan 01 2014
Showing 1-2 of 2 results.