cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101353 a(n) = Sum_{k=0..n} (2^k + Fibonacci(k)).

Original entry on oeis.org

1, 4, 9, 19, 38, 75, 147, 288, 565, 1111, 2190, 4327, 8567, 16992, 33753, 67131, 133654, 266323, 531051, 1059520, 2114861, 4222959, 8434974, 16852239, 33675823, 67305280, 134535537, 268949683, 537702950, 1075088091, 2149661955, 4298491872, 8595637477
Offset: 0

Views

Author

Jorge Coveiro, Dec 25 2004

Keywords

Crossrefs

Cf. A117591 (first differences). - R. J. Mathar, Feb 06 2010

Programs

  • Maple
    seq(sum(2^x+fibonacci(x),x=0..a),a=0..30);
  • Mathematica
    Accumulate[Table[2^k+Fibonacci[k],{k,0,40}]] (* or *) LinearRecurrence[{4,-4,-1,2},{1,4,9,19},40] (* Harvey P. Dale, Aug 17 2025 *)
  • PARI
    Vec((1-3*x^2)/((1-x)*(2*x-1)*(x^2+x-1)) + O(x^40)) \\ Colin Barker, Nov 03 2016

Formula

Fibonacci(n+2) + 2^(n+1) + 2. - Ralf Stephan, May 16 2007
a(n)= 4*a(n-1) -4*a(n-2) -a(n-3) +2*a(n-4). G.f.: (1-3*x^2)/((1-x) * (2*x-1) * (x^2+x-1)). - R. J. Mathar, Feb 06 2010
a(n) = (-2+2^(1+n)+(2^(-1-n)*((1-sqrt(5))^n*(-3+sqrt(5))+(1+sqrt(5))^n*(3+sqrt(5))))/sqrt(5)). - Colin Barker, Nov 03 2016