cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101385 Array read by antidiagonals: T(n,k) = variant of Knuth's Fibonacci (or circle) product of n and k (A101330).

Original entry on oeis.org

3, 8, 8, 21, 34, 21, 24, 144, 144, 24, 55, 152, 987, 152, 55, 58, 610, 1008, 1008, 610, 58, 63, 618, 6765, 1032, 6765, 618, 63, 144, 644, 6786, 6820, 6820, 6786, 644, 144, 147, 2584, 6909, 6844, 75025, 6844, 6909, 2584, 147, 152, 2592, 46368, 6972, 75080
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2005

Keywords

Comments

Let n = Sum_{i >= 2} eps(i) Fib_i and k = Sum_{j >= 2} eps(j) Fib_j be the Zeckendorf expansions of n and k, respectively (cf. A035517, A014417). The product of n and k is defined here to be Sum_{i,j} eps(i)*eps(j) Fib_{i*j} (= T(n,k)).

Examples

			Array begins:
3 8 21 24 55 ...
8 34 144 152 ...
21 144 987 ...
24 152 ...
55 ...
		

Crossrefs

Cf. A101330, A035517, A014417. Main diagonal is A101633.
First 3 rows give A101643, A101644, A101645.

Programs

  • Mathematica
    zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[ fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; kfpv[n_, m_] := Block[{y = Reverse[ IntegerDigits[ zeck[ n]]], z = Reverse[ IntegerDigits[ zeck[ m]]]}, Sum[ y[[i]]*z[[j]]*Fibonacci[(i + 1)(j + 1)], {i, Length[y]}, {j, Length[z]}]]; (* Robert G. Wilson v, Feb 09 2005 *)
    Flatten[ Table[ kfpv[i, n - i], {n, 2, 12}, {i, n - 1, 1, -1}]] (* Robert G. Wilson v, Feb 09 2005 *)

Extensions

More terms from David Applegate, Jan 26 2005