A101401 Triangle read by rows: T(n,k) is the number of noncrossing trees with n edges in which the leftmost child of the root has degree k.
1, 1, 2, 3, 6, 3, 12, 24, 15, 4, 55, 110, 75, 28, 5, 273, 546, 390, 168, 45, 6, 1428, 2856, 2100, 980, 315, 66, 7, 7752, 15504, 11628, 5712, 2040, 528, 91, 8, 43263, 86526, 65835, 33516, 12825, 3762, 819, 120, 9, 246675, 493350, 379500, 198352, 79695, 25410, 6370, 1200, 153, 10
Offset: 1
Examples
T(2,0)=1 and T(2,1)=2 because the noncrossing trees with 2 edges are /\, |_ and _|. Triangle starts: 1; 1, 2; 3, 6, 3; 12, 24, 15, 4; 55, 110, 75, 28, 5; 273, 546, 390, 168, 45, 6; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Programs
-
Maple
T:=proc(n,k) if n=1 and k=1 then 0 elif k<=n then (k+1)*(2*k+1)*binomial(3*n-k-2,2*n-1)/(3*n-k-2) else 0 fi end: for n from 1 to 10 do seq(T(n,k),k=0..n-1) od; # yields sequence in triangular form
-
Mathematica
T[n_, k_] := ((k + 1)(2k + 1)/(3n - k - 2)) Binomial[3n - k - 2, 2n - 1]; Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Apr 10 2020 *)
-
PARI
T(n, k) = if(k
Andrew Howroyd, Nov 06 2017
Formula
T(n, k) = ((k+1)(2k+1)/(3n-k-2)) binomial(3n-k-2, 2n-1).
G.f.: zg/(1-tzg^2)^2, where g = 1+zg^3 is the g.f. of the ternary numbers (A001764).
Comments