A101417 Number of partitions of n into parts without powers of 2.
1, 0, 0, 1, 0, 1, 2, 1, 1, 3, 3, 3, 6, 5, 6, 10, 9, 12, 17, 17, 22, 28, 30, 37, 48, 52, 62, 78, 86, 103, 127, 141, 166, 201, 227, 266, 317, 358, 417, 492, 560, 647, 757, 860, 991, 1153, 1309, 1503, 1738, 1971, 2257, 2594, 2941, 3356, 3843, 4351, 4948, 5644, 6382, 7240
Offset: 0
Keywords
Examples
a(12) = #{3+3+3+3, 6+3+3, 6+6, 7+5, 9+3, 12} = 6. From _Gus Wiseman_, Jan 07 2019: (Start) The a(3) = 1 through a(14) = 5 integer partitions (A = 10, ..., E = 14): (3) (5) (6) (7) (53) (9) (A) (B) (C) (D) (E) (33) (63) (55) (65) (66) (76) (77) (333) (73) (533) (75) (A3) (95) (93) (553) (B3) (633) (733) (653) (3333) (5333) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
g:= product(1-x^(2^j),j=0..15)/product(1-x^i,i=1..75): gser:= series(g, x=0,62): seq(coeff(gser,x,n),n=0..59); # Emeric Deutsch, Mar 29 2006
-
Mathematica
Table[Length[Select[IntegerPartitions[n],And@@Not/@IntegerQ/@Log[2,#]&]],{n,20}] (* Gus Wiseman, Jan 07 2019 *)
Formula
G.f.: Product_{j>=1} (1-x^(2^j)) / Product_{i>=2} (1-x^i). - Emeric Deutsch, Mar 29 2006