A101436 Number of exponents in prime factorization of n which are primes.
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 0
Offset: 1
Examples
36 = 2^2 *3^2. Since 2 is a prime and occurs twice as an exponent in the prime factorization of 36, a(36) = 2.
Links
Programs
-
Mathematica
f[n_] := Length[ Select[ Flatten[ Table[ #[[2]], {1}] & /@ FactorInteger[n]], PrimeQ[ # ] &]]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Jan 25 2005 *) Table[Count[Transpose[FactorInteger[n]][[2]],?PrimeQ],{n,120}] (* _Harvey P. Dale, Mar 21 2016 *)
-
PARI
A101436(n) = vecsum(apply(e -> isprime(e), factorint(n)[, 2])); \\ Antti Karttunen, Jul 19 2017
Formula
Additive with a(p^e) = A010051(e). - Antti Karttunen, Jul 19 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (P(p)-P(p+1)) = 0.39847584805803104040..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 29 2023
Extensions
More terms from Robert G. Wilson v, Jan 25 2005
Comments