A101443 Continued fraction expansion of (I_0(1/2)/I_1(1/2)-1)/2 = 1.56185896... (where I_n is the modified Bessel function of the first kind).
1, 1, 1, 3, 1, 1, 5, 1, 1, 7, 1, 1, 9, 1, 1, 11, 1, 1, 13, 1, 1, 15, 1, 1, 17, 1, 1, 19, 1, 1, 21, 1, 1, 23, 1, 1, 25, 1, 1, 27, 1, 1, 29, 1, 1, 31, 1, 1, 33, 1, 1, 35, 1, 1, 37, 1, 1, 39, 1, 1, 41, 1, 1, 43, 1, 1, 45, 1, 1, 47, 1, 1, 49, 1, 1, 51, 1, 1, 53, 1, 1, 55, 1, 1, 57, 1, 1, 59, 1, 1, 61, 1
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
Programs
-
Mathematica
LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 1, 1, 3, 1, 1}, 92] (* Georg Fischer, Feb 25 2022 *)
-
PARI
contfrac((besseli(0,1/2)/besseli(1,1/2)-1)/2)
-
PARI
a(n) = 2/3*n*!(n%3)+1
Formula
G.f.: 1 + x*U(0) where U(k)= 1 + x/(1 - x*(2*k+2)/(1+x*(2*k+2) - 1/((2*k+2) + 1 - (2*k+2)*x/(x + 1/U(k+1))))) ; (continued fraction, 5-step). - Sergei N. Gladkovskii, Oct 07 2012