A101461 Row maximum of Catalan triangle with zeros (A053121), i.e., maximum value of (m+1)*binomial(n+1,(n-m)/2)/(n+1) for given n with m same parity as n.
1, 1, 1, 2, 3, 5, 9, 14, 28, 48, 90, 165, 297, 572, 1001, 2002, 3640, 7072, 13260, 25194, 48450, 90440, 177650, 326876, 653752, 1225785, 2414425, 4601610, 8947575, 17298645, 33266625, 65132550, 124062000, 245642760, 463991880, 927983760
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
a101461 = maximum . a053121_row -- Reinhard Zumkeller, Mar 04 2012
Formula
a(n) = (m+1)*binomial(n+1, (n-m)/2)/(n+1) where m = floor(sqrt(n+2) - (1 + (-1)^floor(n + sqrt(n+2) - 1))/2). a(n) seems to be slightly less than 2^n/n.
Comments