A101499 A Chebyshev transform of the Catalan numbers.
1, 1, 1, 3, 9, 25, 73, 223, 697, 2217, 7161, 23427, 77457, 258417, 868881, 2941311, 10016241, 34289041, 117935473, 407344771, 1412307481, 4913508489, 17148100569, 60018592735, 210619695913, 740910077497, 2612194773481
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6.
- Jean-Luc Baril and Paul Barry, Two kinds of partial Motzkin paths with air pockets, arXiv:2212.12404 [math.CO], 2022.
- Jean-Luc Baril, Daniela Colmenares, José L. Ramírez, Emmanuel D. Silva, Lina M. Simbaqueba, and Diana A. Toquica, Consecutive pattern-avoidance in Catalan words according to the last symbol, Univ. Bourgogne (France 2023).
Programs
-
Mathematica
CoefficientList[Series[(Sqrt[1+x^2]-Sqrt[1-4*x+x^2])/(2*x*Sqrt[1+x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)
-
PARI
{a(n)=local(A); if(n<0, 0, n++; A=serreverse(x-x^2+x*O(x^n)); polcoeff( subst(A, x, x/(1+x^2)), n))} /* Michael Somos, Sep 18 2006 */
Formula
G.f.: (sqrt(1+x^2)-sqrt(1-4x+x^2))/(2x*sqrt(1+x^2)); a(n)=sum{k=0..floor(n/2), binomial(n-k, k)C(n-2k)}; a(n)=sum{k=0..floor(n/2), sum{i=0..n-2k, sum{j=0..n-2k, ((2i+1)/(n-2k+i+1))(-1)^(i-j)C(2n-4k, n-2k-i)C(i, j)}}}.
Given g.f. A(x) then B(x)=x*A(x) satisfies 0=f(x, B(x)) where f(x, y)= x-(1+x^2)*(y-y^2) . - Michael Somos, Sep 18 2006
Given g.f. A(x) then B(x)=x*A(x) satisfies 0=f(B(x), B(x^2), B(x^4)) where f(u, v, w)= w -v^2*w^2 -(1-v)*w*(v+w) +(u-u^2)^2*(v^2+w^2-v-w). - Michael Somos, Sep 18 2006
Given g.f. A(x) then B(x)=x*A(x) satisfies 0=f(B(x), B(x^2)) where f(u, v)= (v-v^2) -(u-u^2)^2*(1+2*(v-v^2)). - Michael Somos, Sep 18 2006
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +2*(n-1)*a(n-2) +2*(-2*n+3)*a(n-3) +(n-3)*a(n-4)=0. - R. J. Mathar, Nov 16 2012
a(n) ~ (5+3*sqrt(3)) * sqrt(2*sqrt(3)-3) * (2 + sqrt(3))^n / (8 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 08 2014
Comments