cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101499 A Chebyshev transform of the Catalan numbers.

Original entry on oeis.org

1, 1, 1, 3, 9, 25, 73, 223, 697, 2217, 7161, 23427, 77457, 258417, 868881, 2941311, 10016241, 34289041, 117935473, 407344771, 1412307481, 4913508489, 17148100569, 60018592735, 210619695913, 740910077497, 2612194773481
Offset: 0

Views

Author

Paul Barry, Dec 04 2004

Keywords

Comments

A Chebyshev transform of A000108. Under the Chebyshev transform, we map a g.f. g(x) to (1/(1+x^2))g(x/(1+x^2)). Also equivalent to a Catalan transform followed by the Chebyshev transform to 1/(1-x), where the Catalan transform maps h(x)->h(xc(x)), c(x) the g.f. of A000108.
a(n) is the number of peakless Motzkin paths of length n in which the (1,0)-steps at level >=1 come in 2 colors. Example: a(4)=9 because, denoting u=(1,1), h=(1,0), and d=(1,-1), we have 1 path of shape hhhh, 2 paths of shape huhd, 2 paths of shape uhdh, and 2^2=4 paths of shape uhhd. - Emeric Deutsch, May 03 2011

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(Sqrt[1+x^2]-Sqrt[1-4*x+x^2])/(2*x*Sqrt[1+x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, n++; A=serreverse(x-x^2+x*O(x^n)); polcoeff( subst(A, x, x/(1+x^2)), n))} /* Michael Somos, Sep 18 2006 */

Formula

G.f.: (sqrt(1+x^2)-sqrt(1-4x+x^2))/(2x*sqrt(1+x^2)); a(n)=sum{k=0..floor(n/2), binomial(n-k, k)C(n-2k)}; a(n)=sum{k=0..floor(n/2), sum{i=0..n-2k, sum{j=0..n-2k, ((2i+1)/(n-2k+i+1))(-1)^(i-j)C(2n-4k, n-2k-i)C(i, j)}}}.
Given g.f. A(x) then B(x)=x*A(x) satisfies 0=f(x, B(x)) where f(x, y)= x-(1+x^2)*(y-y^2) . - Michael Somos, Sep 18 2006
Given g.f. A(x) then B(x)=x*A(x) satisfies 0=f(B(x), B(x^2), B(x^4)) where f(u, v, w)= w -v^2*w^2 -(1-v)*w*(v+w) +(u-u^2)^2*(v^2+w^2-v-w). - Michael Somos, Sep 18 2006
Given g.f. A(x) then B(x)=x*A(x) satisfies 0=f(B(x), B(x^2)) where f(u, v)= (v-v^2) -(u-u^2)^2*(1+2*(v-v^2)). - Michael Somos, Sep 18 2006
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +2*(n-1)*a(n-2) +2*(-2*n+3)*a(n-3) +(n-3)*a(n-4)=0. - R. J. Mathar, Nov 16 2012
a(n) ~ (5+3*sqrt(3)) * sqrt(2*sqrt(3)-3) * (2 + sqrt(3))^n / (8 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 08 2014