cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101510 Diagonal sums of binomial-Möbius product.

Original entry on oeis.org

1, 2, 5, 10, 21, 43, 87, 175, 352, 707, 1417, 2836, 5674, 11353, 22716, 45443, 90886, 181748, 363451, 726870, 1453773, 2907648, 5815315, 11630195, 23259059, 46515887, 93029852, 186060921, 372129424, 744272221, 1488552317, 2977079872
Offset: 0

Views

Author

Paul Barry, Dec 05 2004

Keywords

Comments

Diagonal sums of A101508.

Programs

  • Mathematica
    a[n_] := Sum[If[Mod[i+1, k+1] == 0, Binomial[n-k, i], 0], {k, 0, n/2}, {i, 0, n-k}]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jan 24 2014 *)
    nmax = 40; CoefficientList[Series[(1/x^2) * Sum[x*(x/(1-x))^k/(1-x*(x/(1-x))^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 18 2019 *)
  • PARI
    a(n) = sum(k=0, n\2, sum(i=0, n-k, if (!Mod(i+1, k+1), binomial(n-k, i)))); \\ Michel Marcus, Mar 16 2019

Formula

a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k, (k+1)|(i+1)} binomial(n-k,i).
G.f.: (1/x^2) * Sum_{n>=1} a*z^n/(1-a*z^n) (generalized Lambert series) where z=x/(1-x) and a=x. - Joerg Arndt, Jan 30 2011
a(n) ~ log(2) * 2^(n+1). - Vaclav Kotesovec, Mar 18 2019