A101510 Diagonal sums of binomial-Möbius product.
1, 2, 5, 10, 21, 43, 87, 175, 352, 707, 1417, 2836, 5674, 11353, 22716, 45443, 90886, 181748, 363451, 726870, 1453773, 2907648, 5815315, 11630195, 23259059, 46515887, 93029852, 186060921, 372129424, 744272221, 1488552317, 2977079872
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
a[n_] := Sum[If[Mod[i+1, k+1] == 0, Binomial[n-k, i], 0], {k, 0, n/2}, {i, 0, n-k}]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jan 24 2014 *) nmax = 40; CoefficientList[Series[(1/x^2) * Sum[x*(x/(1-x))^k/(1-x*(x/(1-x))^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 18 2019 *)
-
PARI
a(n) = sum(k=0, n\2, sum(i=0, n-k, if (!Mod(i+1, k+1), binomial(n-k, i)))); \\ Michel Marcus, Mar 16 2019
Formula
a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k, (k+1)|(i+1)} binomial(n-k,i).
G.f.: (1/x^2) * Sum_{n>=1} a*z^n/(1-a*z^n) (generalized Lambert series) where z=x/(1-x) and a=x. - Joerg Arndt, Jan 30 2011
a(n) ~ log(2) * 2^(n+1). - Vaclav Kotesovec, Mar 18 2019
Comments